다중 채널 순서화 기술 기반 효율적인 Soft-Output MIMO 신호검출 기법과 VLSI 구현

An Efficient Soft-Output MIMO Signal Detection Method Based on Multiple Channel Ordering Technique and Its VLSI Implementation

  • 임태호 (중앙대학교 전자전기공학부 디지털통신연구실) ;
  • 유성욱 (중앙대학교 전자전기공학부 디지털통신연구실) ;
  • 김재권 (연세대학교 원주캠퍼스 디지털통신연구실) ;
  • 조용수 (중앙대학교 전자전기공학부 디지털통신연구실)
  • 투고 : 2010.06.06
  • 심사 : 2010.11.22
  • 발행 : 2010.12.31

초록

본 논문에서는 공간다중화 multiple input multiple output (MIMO) 시스템을 위한 효율적인 soft-output 신호검출 기법을 제안한다. 제안된 기법은 ordered successive interference cancellation (OSIC) 알고리즘을 기반으로 하지만, 오류 전파 문제를 크게 줄임으로써 기존 OSIC 알고리즘에 비해 큰 성능 향상을 보인다. 제안된 기법은 다중 순서화 기술을 이용한 enhanced OSIC (ESIC) 알고리즘을 결합한 기법으로 신뢰도 높은 log likelihood ratio(LLR) 값을 매우 적은 후보 심볼 벡터를 이용하여 생성할 수 있다. 본 논문에서는 $4{\times}4$ 16-QAM MIMO 시스템을 위한 OSIC, K-Best 가법과 제안된 신호검출 기법을 $0.13{\mu}m$ CMOS 기술 환경에서 구현하였으며, 모의 시험과 구현 결과를 통해 제안된 신호검출 기법이 성능과 하드웨어 구현 측면에서 매우 효율적임을 확인하였다.

In this paper, we propose an efficient soft-output signal detection method for spatially multiplexed multiple input multiple output (MIMO) systems. The proposed method is based on the ordered successive interference cancellation (OSIC) algorithm, but it significantly improves the performance of the original OSIC algorithm by solving the error propagation problem. The proposed method combines this enhanced OSIC (ESIC) algorithm with a multiple ordering technique in a very efficient way. As a result, the log likelihood ratio (LLR) values can be computed by using a very small set of candidate symbol vectors. The proposed method has been implemented with a $0.13{\mu}m$ CMOS technology for a $4{\times}4$ 16-QAM MIMO system. The simulation and implementation results show that the proposed detector provides a very good solution in terms of performance and hardware complexity.

키워드

참고문헌

  1. A. J. Paulraj, D. A. Gore, R. U. Nabar, and H. Bolcskei, "An overview of MIMO communications - a key to gigabit wireless," Proceedings of the IEEE, Vol.92, No.2, pp.198-218, Feb. 2004. https://doi.org/10.1109/JPROC.2003.821915
  2. G. J. Foschini, "Layered space-time architecture for wireless communication in a fading environment when using multiple antennas," Bell Lab. Technical Journal, Vol.1, No.2, pp.41-59, Aug. 1996.
  3. Y. Dai, S. Sun and Z. Lei, "A comparative study of QRD-M detection and sphere decoding for MIMO-OFDM systems," in Proc. IEEE Int. Symp. of Personal, Indoor and Mobile Radio Commun., pp.186-190, Sep. 2005.
  4. L. Barbero and J. Thompson, "A fixedcomplexity MIMO detector based on the complex sphere decoder," in Proc. IEEE Int. Workshop Signal Process. Advances Wireless Commun., Jul. 2006, pp.1–5.
  5. Z. Guo and P. Nilsson, "Algorithm and implementation of the K-best sphere decoding for MIMO detection," IEEE J. Sel. Areas Commun., Vol.24, No.3, pp.491-503, Mar. 2006.
  6. M. Wenk, M. Zellweger, A. Burg, N. Felber, and W. Fichtner, "K-best MIMO detection VLSI architectures achieving up to 424 Mbps," in Proc. IEEE Int. Symp. Circuits and Systems, pp.1151-1154, May 2006.
  7. S. Chen, T. Zhang, and Y. Xin, "Relaxed K-best MIMO signal detector design and VLSI implementation," IEEE Trans. VLSI Systems, Vol.15, No.3, pp.328-337, Mar. 2007.
  8. K. Kim, J. Yue, R. Iltis, J. Gibson, "A QRD-M/Kalman filter-based detection and channel estimation algorithm for MIMO-OFDM systems," IEEE Trans. Wireless Commun., Vol.4, No.2, pp.710-721, Mar. 2005.
  9. S. Mondal, A. M. Eltawil, C.-A. Shen, and K. N. Salama, "Design and implementation of a sort-free K-Best sphere decoder," IEEE Trans. VLSI Systems (online), 2009.
  10. C. A. Shen and A. M. Eltawil, "A radius adaptive K-Best decoder with early termination: algorithm and VLSI architecture," IEEE Trans. Circuits and Systems I (online), 2010.
  11. T. H. Im, I. Park, J. M. Kim, J. Yi, J. Kim, S. Yu, and Y. S. Cho, "A new signal detection method for spatially multiplexed MIMO systems and its VLSI implementation," IEEE Trans. Circuits and Systems-II, Vol.56, No.5, pp.399-403, May 2009. https://doi.org/10.1109/TCSII.2009.2019331
  12. B. M. Hochwald and S. Brink, "Achieving near-capacity on a multiple-antennas channel," IEEE Trans. Commun. Vol.51, No.3, pp.389-399, Mar. 2003. https://doi.org/10.1109/TCOMM.2003.809789
  13. C. Studer, A. Burg, and H. Bölcskei, "Soft-output sphere decoding: algorithms and VLSI implementation," IEEE J. Sel. Areas Commun., Vol.26, No.2, pp.290-300, Feb. 2008.
  14. A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner and H. Bölcskei, "VLSI implementation of MIMO detection using the sphere decoding algorithm," IEEE J. Solid-State Circuits, Vol.40, No.7, pp.1566-1577, Jul. 2005.
  15. M. Siti and M. Fitz, "A novel soft-output layered orthogonal lattice detector for multiple antenna communications," in Proc. IEEE ICC, Vol.4, pp.1686-1691, June 2006.
  16. C. K. Singh, S. H. Prasad, and P. T. Balsara, "VLSI architecture for matrix inversion using modified Gram-Schmidt based QR decomposition," in Proc. Int. Conf. VLSI Design, pp.836–841, Jan. 2007.