Performance Improvement of ARQ Protocol using HARQ Feedback Information in IEEE 802.16m Systems

IEEE 802.16m 시스템에서 HARQ 피드백 정보를 이용한 ARQ 프로토콜 성능 개선

  • Received : 2010.10.15
  • Accepted : 2010.12.06
  • Published : 2010.12.31

Abstract

In this paper, the effects of HARQ feedback error are evaluated in IEEE 802.16m system when the HARQ and ARQ interactions that utilize the HARQ feedback information is used. Also, the HARQ and ARQ interaction scheme considering HARQ feedback errors are proposed. The HARQ and ARQ interaction scheme improve the system throughput by using the HARQ feedback information instead of the ARQ feedback message, which reduce retransmission time. However, errors in the HARQ feedback information generate severe performance degradation. Especially, the local NAK errors between HARQ feedback error critically degrade the performance, because the local NAK errors lead the loss of ARQ blocks. We propose a channel state-based schemes for HARQ and ARQ interactions to mitigate the throughput degradation due to HARQ feedback errors. Simulation results show that the proposed scheme improves the throughput and the delay performance.

본 논문에서는 IEEE 802.16m 시스템에서 HARQ 피드백 정보를 이용한 ARQ 프로토콜 (HARQ and ARQ interactions)을 사용할 때 HARQ 피드백 오류가 성능에 미치는 영향을 분석한다. 또한, HARQ 피드백 오류를 고려한 새로운 HARQ and ARQ interactions 기법을 제안한다. HARQ and ARQ interactions 기법은 ARQ 피드백 메시지를 대신하여 HARQ 피드백 정보를 사용하여 재전송 시간을 단축함으로써 시스템 throughput을 증가시킨다. 그러나 HARQ 피드백 메시지에 오류가 발생하는 경우 성능 열화가 발생 할 수 있다. 특히, HARQ 피드백 오류 중 Local NAK 오류가 발생 시 ARQ 블록의 유실로 인한 성능 열화가 심각하다. 본 논문에서는 HARQ Local NAK 오류를 고려하고 채널상태에 적응적으로 동작하는 HARQ and ARQ interactions 기법을 제안한다. 모의실험을 통해 제안한 기법 사용 시 throughput 및 delay 성능 향상을 확인하였고, 이를 정량적으로 분석하였다.

Keywords

References

  1. IEEE 802.16e-2009 Std., "IEEE standard for local and metropolitan area networks-Part 16: Air interface for fixed broadband wireless access systems," 2009.
  2. 3GPP TS 36.300 V10.0.0, "E-UTRA and E-UTRAN; overall description; Stage2," June 2010.
  3. IEEE 802.16m/D4 Std., "IEEE standard for local and metropolitan area networks part 16: Air interface for broadband wireless access systems," 2010.
  4. D. Kim, Y. Choi, S. Jin, K. Han, S. Choi, "CL-ARQ: Efficient ARQ for two-layer retransmission schemes," in proc. of ACM IWCMC, pp. 61-66, Aug. 2007.
  5. M. Mathis, J. Semke, and J. Mahdavi, "The Macroscopic Behavior of the TCP Congestion Avoidance Algorithm," Computer Communication Review, ACM SIGCOMM, Vol.27, No.3, pp.67-82, July 1997. https://doi.org/10.1145/263932.264023
  6. J. Padhye, V. Firoiu, D. Towsley, J. Kurose, "Modeling TCP Throughput: A Simple Model and its Empirical Validation," in Proc. ACM SIGCOMM, pp. 303-314, May 1998.
  7. Shashikant Maheshwari, Adrian BoariuI and Andrea Bacciccola, "ARQ/HARQ interworking to reduce the ARQ feedback overhead : IEEE C802.16m-08/1142," Sep. 2008.
  8. Xiangying Yang et al., "ARQ and HARQ inter-working for IEEE 802.16m system : IEEE C802.16m-08/1053r1," Sep. 2008.
  9. Yair Bourlas, Lei Wang, Erik Colban and Ken Stanwood, "NACK based ARQ Over HARQ in IEEE 802.16m : IEEE C802.16m-08/1038r2," Sep. 2008.
  10. Mo-Han Fong et al., "Proposal for IEEE 802.16m ARQ protocol : IEEE C802.16m-08/ 1060," Sep. 2008.
  11. Sungkyung Kim, Sungcheol Chang, KwangjaeLim, Chulsik Yoon, "ARQ Operation for IEEE 802.16m : IEEE C802.16m-08/ 1120r1," Sep. 2009.
  12. Nortel Networks, "Nortel Networks' Reference Simulation Methodology for the Performance Evaluation of OFDM/WCDMA in UTRAN : 3GPP TSG-RAN1 R1-030518," May 2003.
  13. Nortel Networks, "Proposal for IEEE 802.16m ARQ Protocol : IEEE C802.16m-08/1060," Sep. 2008.