Visualizer for real number domain data and its applications

실수 정의역 데이터 시각화와 그 응용 사례

  • Received : 2010.07.09
  • Accepted : 2010.09.13
  • Published : 2010.12.01

Abstract

Effective visualizing is an important issue when one processing real number domain volume data such as distance fields, or volume texture. In this paper, we introduce a framework for inspecting, magnifying, cross-section viewing of real number domain volume data from an implementation of a simple interface. The interface can be freely implemented from any kind of existing algorithm, so that we can easily view the result and evaluate the algorithm.

거리장, 볼륨 텍스처와 같은 3차원 실수 정의역을 갖는 데이터를 다룰 때, 이를 효과적으로 시각화하는 것은 중요한 주제이다. 본 논문에서는 간단한 인터페이스 구현체를 입력으로 받아 절단면 보기, 확대, 특정 위치의 값 조회 등의 작업을 효과적으로 수행하는 프레임워크를 제안한다. 인터페이스 구현체에는 다양한 알고리즘을 자유롭게 구현해 넣을 수 있으며, 여러 가지 종류의 데이터들을 조회하고 알고리즘수행 결과를 쉽게 평가할 수 있다.

Keywords

References

  1. J. C. Hart, "Sphere tracing: a geometric method for the antialiased ray tracing of implicit surfaces," The Visual Computer, vol. 12, no. 10, pp. 527- 545,1996. https://doi.org/10.1007/s003710050084
  2. W. E. Lorensen and H. E. Cline, "Marching cubes: A high resolution 3d surface construction algorithm," ACM SIGGRAPH, vol. 21, no. 4, pp. 163- 169, 1987. https://doi.org/10.1145/37402.37422
  3. T. Ju, F. Losasso, S. Schaefer. and J. Warren, "Dual contouring of hermite data," ACM SIGGRAPH, pp. 339-346, 2002.
  4. C. Upson, T. Faulhaber, Jr., D. Kamins, D. H. Laidlaw, D. Schlegel, J. Vroom, R. Gurwitz, and A. van Dam, "The application visualization system: A computational environment for scientific visualization," IEEE Comput. Graph. Appl., vol. 9,no. 4,pp. 30-42,1989. https://doi.org/10.1109/38.31462
  5. W. J. Schroeder, K. M. Martin, and W. E. Lorensen, "The design and implementation of an object-oriented toolkit for 3d graphics and visualization," IEEE Visualization, pp. 93-100, 1996.
  6. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements of reusable objectoriented software. Boston, MA, USA: AddisonWesley Longman Publishing Co., Inc., 1995.
  7. J. A. Baerentzen and H. Aanaes, "Signed distance computation using the angle weighted pseudonormal," IEEE TVCG, vol. 11, no. 3, pp. 243-253, 2005.
  8. S. F. Frisken, R. N. Perry, A. P. Rockwood, and T. R. Jones, "Adaptively sampled distance fields: a general representation of shape for computer graphics," ACM SIGGRAPH, pp. 249-254,2000.
  9. Y. Ohtake, A. Belyacv, M. Alexa, G. Turk, and H.-P. Seidel, "Multi-level partition of unity implicits," ACM SIGGRAPH, vol. 22, no. 3, pp. 463-470, 2003. https://doi.org/10.1145/882262.882293
  10. S. Lefebvre and H. Hoppe, "Compressed randomaccess trees for spatially coherent data," in Eurographics Symposium on Rendering, 2007.
  11. M. Shevtsov, "Highly parallel fast kd-tree construction for interactive ray tracing of dynamic scenes," Computer Graphics Forum, vol. 26, no. 3, pp.395-404,2007. https://doi.org/10.1111/j.1467-8659.2007.01062.x