저등급석탄(低等級石炭)(인도네시아 IBC)의 고정층(固定層) 반응기(反應器) 실험(實驗)을 통한 건조(乾操) 반응속도론(反應速度論) 연구(硏究)

A Study on Drying Kinetics of Low Rank Coal(Indonesia-IBC) through the Fixed-Bed Reactor Experiments

  • 강태진 (아주대학교 에너지시스템학부) ;
  • 전도만 (아주대학교 에너지시스템학부) ;
  • 전영신 (아주대학교 에너지시스템학부) ;
  • 강석환 (고등기술연구원) ;
  • 이시훈 (한국에너지기술연구원) ;
  • 김상도 (한국에너지기술연구원) ;
  • 김형택 (아주대학교 에너지시스템학부)
  • 투고 : 2010.10.12
  • 심사 : 2010.12.03
  • 발행 : 2010.12.30

초록

에너지 위기로 인하여 석탄에 대한 관심이 증가하고 있다. 그 중에서도 저등급석탄에 대한 관심이 증가하고 있는데, 저등급석탄은 수분함량이 30~60%갱도로 수분함량이 높다. 이러한 저등급 석탄을 발전용 연료로 사용하기 위해서는 건조공정이 선행적으로 이루어져야 한다. 본 연구에서는 고정층 반응기를 이용하여 저등급석탄의 건조 반응속도론을 도출하였다. 건조반응속도는 입자크기, 주입가스 온도, 가스 유속, L/D의 영향을 변수로 하여 도출하였다. Reynold's number는 가스 유속과 석탄업자의 크기, L/D는 반응기 직경과 대상탄의 충진양을 보정하기 위해 고려하였다. 석탄의 건조 특성에서도 알 수 있듯이, 고정층 반응기를 이용한 저등급석탄의 건조에 있어서도 표면수분의 건조가 원활하며, 상 경계 반응이 적합한 메커니즘임을 확인 할 수 있었다.

The crisis of energy gives rise to the growing concerns over continuing uncertainty in the energy market. Under these circumstances, there are also increasing interests on coals. In particular, Low Rank Coal (LRC) is receiving gradual attentions from green industry. But due to is high moisture content range from 30 - 60%, drying process has to be preceded before being utilized as power plant. In this study drying kinetics of LRC is induced by using a fixed-bed reactor. The drying kinetics was evaluated in from of the particle size, the inlet gas temperature, the drying time, the gas velocity, and the LID ratio. The consideration of the reynold's number was taken for correction of gas velocity, particle size and LID was taken for correction of reactor diameter, packing height of coal. As being seen as characteristic of drying coal, it can be found that fixed-bed reactor can contributed to active drying of free water. In this sense, it could be considered that phase boundary reaction is appropriate mechanism.

키워드

참고문헌

  1. 이시훈, 2008: 저등급 석탄의 고품위화 기술 개발, 지식경제부 기획보고서.
  2. K. Brendow, 2006: World and Central European Coal Demand Perspectives to 2030, Proc. of Int. Conf. Coal and Power Eng., pp13-15, September, 2006.
  3. D. F. Umar and U. B. Hiromoto, 2006: Change of combustion characterstics of Indonesian low rank coal due to upgraded brown coal process, Fuel Processing Technology, 87, pp1007-1011. https://doi.org/10.1016/j.fuproc.2006.07.010
  4. White Energy Company, 2008: MlTHRA Research.
  5. Satoru Sugita, Tetsuya Deguchi and Takuo Shigehisa, 2006: Demonstration of a UBC process in Indonesia, 神製鋼技報, 56(2), pp23-26.
  6. Anderson, B, 1998: Development of Integrated drying and gasification of brown coal for Power Generation, Institute of Chemical Engineers Conference: Gasification - The Gateway to the Future, Dresden, Germany, September.
  7. 고완석 등, 2003: 단위조작, pp383-413, 보문당.
  8. LI Xianchun, et al., 2009: Experimental study on drying and moisture re-adsorption kinetics of an Indonesian low rank coal, Journal of Environmental Sciences Suoolement, S127-S130.
  9. Yinghong Chen and Qi Wang, 2007: Thermal oxidative degradation kinetics of flame-retarded polypropylene with intumescent flame-retardant master batches in situ prepared in twin-screw extruder, Polymer Degradation and Stability, 92, pp280-291. https://doi.org/10.1016/j.polymdegradstab.2006.11.004
  10. L. T. Vlaev, V. G. Georgieva, and S. D. Genieva, 2007: Products and Kinetics of Non-isothermal Decomposition of Vandium(IV) Oxide Compounds, Journal of Thermal Analysis and Calorimetry, 88(3), pp805-812. https://doi.org/10.1007/s10973-005-7149-y
  11. S,Ch. Turmanova, et al., 2008: Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites, eXPRESS Polymer Letters, 2(2), pp133-146. https://doi.org/10.3144/expresspolymlett.2008.18
  12. X. Ramis, et al., 2004: Thermal degradation of polypropylene/starch-based materials with enhanced biodegradability. Polymer Degradation and Stability, 86, pp483-491. https://doi.org/10.1016/j.polymdegradstab.2004.05.021
  13. Sergey Vyazovkin and David Dollimore, 1996: Linear and Nonlinear Procedures in Isoconversional Computations of the Activation Energy of Nonisothermal Reactions in Solids, J. Chem. Inf. Comput. Sci., 36, pp42-45. https://doi.org/10.1021/ci950062m
  14. Vyazovkin, S., 2006: Model-free kinetics: Staying free of multiplying entities without necessity, J. Therm. Anal. Calorim., 83(1), pp45-51. https://doi.org/10.1007/s10973-005-7044-6
  15. Junmeng Cai and Ronghou Liu, 2009: Kinetics Analysis of Solid-State Reaction: A General Empirical Kinetic Model, Ind. Eng. Chem. Res., 48, pp3249-3253. https://doi.org/10.1021/ie8018615
  16. Warren L.McCabe, Julian C.Smith, and Peter Harriott, 2001: Unit Operation of Chemical Engineering, McGraw-Hill Korea, 2001, pp. 763-797.
  17. A.S. Mujumdar, 2007: Handbook of Industrial drying, 3th Edition, CRE Press, pp993-1016.
  18. 화학공학편람 편찬위원회, 1995: 화학공학편람, pp.654-692, 집문사.