DOI QR코드

DOI QR Code

Comparative Analysis of Immunosuppressive Metabolites Synthesized by an Entomopathogenic Bacterium, Photorhabdus temperata ssp. temperata, to Select Economic Bacterial Culture Media

곤충병원세균(Photorhabdus temperata ssp. temperata) 유래 곤충 면역 억제물질 생성 비교 연구를 통한 저렴한 세균 배지 선발

  • Seo, Sam-Yeol (Department of Bioresource Sciences, Andong National University) ;
  • Jang, Ho-Jin (Department of Bioresource Sciences, Andong National University) ;
  • Kim, Kun-Woo (Department of Bioresource Sciences, Andong National University) ;
  • Kim, Yong-Gyun (Department of Bioresource Sciences, Andong National University)
  • 서삼열 (안동대학교 자연과학대학 생명자원과학과) ;
  • 장호진 (안동대학교 자연과학대학 생명자원과학과) ;
  • 김건우 (안동대학교 자연과학대학 생명자원과학과) ;
  • 김용균 (안동대학교 자연과학대학 생명자원과학과)
  • Received : 2010.11.12
  • Accepted : 2010.12.15
  • Published : 2010.12.30

Abstract

An entomopathogenic bacterium, Photorhabdus temperata ssp. temperata (Ptt), suppresses insect immune responses and facilitates its symbiotic nematode development in target insects. The immunosuppressive activity of Ptt enhances pathogenicity of various microbial pesticides including Bacillus thuringiensis (Bt). This study was performed to select a cheap and efficient bacterial culture medium for large scale culturing of the bacteria. Relatively cheap industrial bacterial culture media (MY and M2) were compared to two research media, Luria-Bertani (LB) and tryptic soy broth (TSB). In all tested media, a constant initial population of Ptt multiplied and reached a stationary phase at 48 h. However, more bacterial colony densities were detected in LB and TSB at the stationary phase compared to two industrial media. All bacterial culture broth gave significant synergism to Bt pathogenicity against third instars of the diamondback moth, Plutella xylostella. Production of bacterial metabolites extracted by either hexane or ethyl acetate did not show any significant difference in total mass among four culture media. Reverse phase HPLC separated the four bacterial metabolites, which were not much different in quantities among four bacterial culture broths. This study suggests that two industrial bacterial culture media can be used to economically culture Ptt in a large scale.

곤충병원세균인 Photorhabdus temperata ssp. temperata(Ptt)는 곤충의 면역반응을 억제시켜 피기생 곤충 체내에서 공생하는 기주 선충의 발육을 도모하게 된다. 또한 Ptt의 변역억제 활성은 Bacillus thuringiensis(Bt)의 병원성을 증가시킨다. 본 연구는 이러한 유용 곤충병원세균의 대량 생산을 위한 저렴한 배지를 선발하기 위해 수행되었으며, 두 연구용 배지(LB, TSB)와 저렴한 산업용 두 배지(MY, M2)를 상호 비교하였다 모든 배양액에 동일한 밀도의 Ptt를 접종하고 배양하였을 때 48 시간 이후 정지상이 나타났다. 그러나 연구용 배양액인 LB와 TSB에서 두 가지 산업용 배양액보다 정지상에서 높은 세균 밀도를 보였다. 네 가지 배지에서 증식된 Ptt 배양액은 모두 배추좀나방(Plutella xylostella) 3령충에 대한 Bt 병원성을 현격하게 제고시켰고, 이들 배지 종류에 따라 치아가 없었다. 네 가지 배양액에서 세균의 증식에 의해 생산되는 대시물질의 양과 배지별 생산되는 대사물질의 동일성을 확인하기 위해 헥산과 에틸아세테이트의 유기용매로 추출했다. 시간별 배양액의 유기용매 추출물질은 세균의 증식과 비슷하게 대사물질의 생산량에서도 증가하는 것을 알 수 있었다. 역상 HPLC를 이용하여 네 가지 세균 배양액 각각에서 대사물질을 분리하였고, 정량적으로 네 가지 대사물질이 서로 다른 배지에서 통계적으로 차이 없이 검출되었다. 본 연구는 비교적 저렴한 두 가지 산업용 배지가 유용 대사물질의 생성에 변화 없이 Ptt 세균을 저렴하게 배양할 수 있다고 제시하고 있다.

Keywords

References

  1. Adams, B.J. and K.B. Nguyen. 2002. Taxonomy and systematics. pp. 1-33. In Entomopathogenic nematology, ed. by R. Gaugler. CABI Publishing, New York.
  2. Akhurst, R.J. 1980. Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J. Gen. Microbiol. 121: 303-309.
  3. Broderick, N.A., K.F. Raffa and J. Handelsman. 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA 103: 15196-15199. https://doi.org/10.1073/pnas.0604865103
  4. Demain, A.L. 1998. Induction of microbial secondary metabolism. Intl. Microbiol. 1: 259-264.
  5. Dennis, E.A. 1994. Diversity of group types, regulation, and function of phospholipase $A_2$. J. Biol. Chem. 269: 13057-13060.
  6. Dennis, E.A. 1997. The growing phospholipase $A_2$ superfamily of signal transduction enzymes. Trends Biochem. Sci. 22: 1-2. https://doi.org/10.1016/S0968-0004(96)20031-3
  7. Dunphy, G.B. and J.M. Webster. 1991. Antihemocytic surface components of Xenorhabdus nematophilus var. dutki and their modification by serum of nonimmune larvae of Galleria mellonella. J. Invertebr. Pathol. 58: 40-51. https://doi.org/10.1016/0022-2011(91)90160-R
  8. Dunphy, G.B. and J.M. Webster. 1994. Interaction of Xenorhabdus nematophila subsp. nematophilus with the haemolymph of Galleria mellonella. J. Insect Physiol. 30: 883-889.
  9. ffrench-Constant, R.H., N. Waterfield and P. Daborn. 2005. Insecticidal toxins from Photorhabdus and Xenorhabdus. pp. 239-253, In Comprehensive molecular insect science, eds. by L.I. Gilbert, I. Kostas and S.S. Gill. Elsevier, New York.
  10. Gillespie, J.P., M.R. Kanost and T. Trenczek. 1997. Biological mediators of insect immunity. Annu. Rev. Entomol. 42: 611-643. https://doi.org/10.1146/annurev.ento.42.1.611
  11. Herbert, E. E. and H. Goodrich-Blair. 2007. Friend and foe: the two face of Xenorhabdus nematophila. Nat. Rev. Microbiol. 5: 634-646. https://doi.org/10.1038/nrmicro1706
  12. Huisman, G.W., R. Kolter. 1994. Sensing starvation: a homoserine lactone-dependent signaling pathway in Escherichia coli. Science 265: 537-539. https://doi.org/10.1126/science.7545940
  13. Jeon, C. and J. Gong. 1999. Microbial technology. Donghwa, Paju, Korea, pp. 191-208.
  14. Jung, S. and Y. Kim. 2006. Synergistic effect of entomopathogenic bacteria (Xenorhabdus sp. and Photorhabdus temperata ssp. temperata) on the pathogenicity of Bacillus thuringiensis ssp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 35: 1584-1589. https://doi.org/10.1603/0046-225X(2006)35[1584:SEOEBX]2.0.CO;2
  15. Kang, S., S. Han and Y. Kim. 2004. Identification of an entomopathogenic bacterium, Photorhabdus temperata subsp. temperata, in Korea. J. Asia Pac. Entomol. 7: 331-337. https://doi.org/10.1016/S1226-8615(08)60235-6
  16. Kaya, H.K. and R. Gaugler. 1993. Entomopathogenic nematodes. Annu. Rev. Entomol. 38: 181-206. https://doi.org/10.1146/annurev.en.38.010193.001145
  17. Kim, J., M. Nalini and Y. Kim. 2008. Immunosuppressive activity of cultured broth of entomopathogenic bacteria on the beet armyworm, Spodoptera exigua, and their mixture effects with Bt biopesticide on insecticidal pathogenicity. Kor. J. Pestic. Sci. 12: 184-191.
  18. Kim, Y., D. Ji, S. Cho and Y. Park. 2005. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phosopholipase $A_2$ to induce host immunodepression. J. Insect Physiol. 89: 258-264.
  19. Kwon, B. and Y. Kim. 2008. Benzylideneacetone, an immunosuppressant, enhances virulence of Bacillus thuringiensis against beet armyworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 101: 36-41. https://doi.org/10.1603/0022-0493(2008)101[36:BAIEVO]2.0.CO;2
  20. Miller, J. 2005. Eicosanoids influence in vitro elongation of plasmatocytes from the tobacco hornworm, Manduca sexta. Arch. Insect Biochem. Physiol. 59: 42-51. https://doi.org/10.1002/arch.20052
  21. Park, S., G. Kim., M. Kim., Y. Kim., J. Kim, and H. Choi. 1997. Microbiological applications. Donghwa, Paju, Korea, pp. 61-82.
  22. Park, Y. and Y. Kim. 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46: 1469-1476. https://doi.org/10.1016/S0022-1910(00)00071-8
  23. Park, Y., Y. Yi and Y. Kim. 1999. Identification and characterization of a symbiotic bacterium associated with Steinernema carpocapsae in Korea. J. Asia Pac. Entomol. 2: 105-111. https://doi.org/10.1016/S1226-8615(08)60038-2
  24. SAS Institute, Inc. 1989. SAS/STAT user's guide, Release 6.03, Ed. Cary, NC.
  25. Seo, S. and Y. Kim. 2009. Two entomopathogenic bacteria, Xenorhabdus nematophila K1 and Photorhabdus temperata subsp. temperata ANU101 secrete factors enhancing Bt pathogenicity against the diamondback moth, Plutella xylostella. Kor. J. Appl. Entomol. 38: 385-392. https://doi.org/10.5656/KSAE.2009.48.3.385
  26. Seo, S. and Y. Kim. 2010. Study on development of novel biopesticides using entomopathogenic bacterial culture broth of Xenorhabdus and Photorhabdus. Kor. J. Appl. Entomol. 49: 241-249. https://doi.org/10.5656/KSAE.2010.49.3.241
  27. Shin, H. 1987. Biology of microorganisms. Hyungseol, Seoul, Korea, pp. 522-528.
  28. Shrestha, S., Y.P. Hong and Y. Kim. 2010. Two chemical derivatives of bacterial metabolites suppress cellular immune responses and enhance pathogenicity of Bacillus thuringiensis against the diamondback moth, Plutella xylostella. J. Asia Pac. Entomol. 13: 55-60. https://doi.org/10.1016/j.aspen.2009.11.005
  29. Shrestha, S. and Y. Kim. 2008. Eicosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm, Spodoptera exigua. Insect Biochem. Mol. Biol. 38: 99-112. https://doi.org/10.1016/j.ibmb.2007.09.013
  30. Shrestha, S. and Y. Kim. 2009. Biochemical characteristics of immune-associated phospholipase $A_2$ and its inhibition by an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 47: 774-782. https://doi.org/10.1007/s12275-009-0145-3
  31. Stanley, D. 2000. Eicosanoids in invertebrate signal transduction systems. 277 pp. Princeton University Press, New Jersey.
  32. Stanley, D. 2006. Prostaglandins and other eicosanoids in insects: biological significance. Annu. Rev. Entomol. 51: 25-44. https://doi.org/10.1146/annurev.ento.51.110104.151021

Cited by

  1. Development of "Bt-Plus" Biopesticide Using Entomopathogenic Bacterial (Xenorhabdus nematophila, Photorhabdus temperata ssp. temperata) Metabolites vol.50, pp.3, 2011, https://doi.org/10.5656/KSAE.2011.07.0.24
  2. Stabilization and Antifungal Activity of Isolated Symbiotic Bacteria from Entomopathogenic Nematodes vol.30, pp.3, 2015, https://doi.org/10.7841/ksbbj.2015.30.3.132
  3. Insecticidal Effect of Organic Materials of BT, Neem and Matrine Alone and Its Mixture against Major Insect Pests of Organic Chinese cabbage vol.17, pp.3, 2013, https://doi.org/10.7585/kjps.2013.17.3.213
  4. Phospholipase A2 inhibitors in bacterial culture broth enhance pathogenicity of a fungus Nomuraea rileyi vol.50, pp.4, 2012, https://doi.org/10.1007/s12275-012-2108-3
  5. Identification, Synthesis, and Biological Activities of Cyclic L-Prolyl-L-Tyrosine vol.56, pp.5, 2012, https://doi.org/10.5012/jkcs.2012.56.5.661