Blind Equalization based on Maximum Cross-Correntropy Criterion using a Set of Randomly Generated Symbol

랜덤 심볼을 사용한 최대 코렌트로피 기준의 블라인드 등화

  • 김남용 (강원대학교 공학대학 전자정보통신공학부) ;
  • 강성진 (한국기술교육대학교 정보기술공학부) ;
  • 홍대기 (상명대학교 공과대학 정보통신공학과)
  • Published : 2010.01.31

Abstract

Correntropy is a generalized correlation function that contains higher order moments of the probability density function (PDF) than the conventional moment expansions. The criterion maximizing cross-correntropy (MCC) of two different random variables has yielded superior performance particularly in nonlinear, non-Gaussian signal processing comparing to mean squared error criterion. In this paper we propose a new blind equalization algorithm based on cross-correntropy criterion which uses, as two variables, equalizer output PDF and Parzen PDF estimate of a set of randomly generated symbols that complies with the transmitted symbol PDF. The performance of the proposed algorithm based on MCC is compared with the Euclidian distance minimization.

코렌트로피는 일반화된 상관함수로서 확률밀도함수의 고차 모멘트를 가지는데 이는 기존의 모멘트 확장 방식들보다 더 높은 고차 모멘트이다. 두 다른 랜덤 변수의 상호 코렌트로피를 최대화하는 이 기준 방식은 최소자승오차 기준 방식과 비교할 때, 비선형, 비 가우시안 신호 처리 환경에서 특히 탁월한 성능을 나타낸다. 이 논문에서는, 상호 코렌트로피 기준에 근거한 새로운 블라인드 등화 기법을 제안한다. 이 기법은 등화기 출력의 확률밀도함수와, 송신 심볼의 분포에 맞추어 발생시킨 랜덤심볼의 파전 확률밀도 추정치라는 두 확률변수에 상호 코렌트로피를 적용한다. 상호 코렌트로피에 근거한 제안 방식의 블라인드 등화 성능을 유클리디언 거리 최소화 방식과 비교하였다.

Keywords

References

  1. L. M. Garth, "A dynamic convergence analysis of blind equalization algorithms," IEEE Trans. on Comm., Vol.49, pp.624-634. April, 2001. https://doi.org/10.1109/26.917769
  2. F. Mazzenga, "Channel estimation and equalization for M-QAM transmission with a hidden pilot sequence," IEEE Trans. on Broadcasting, Vol.46, pp.170-176, June, 2000. https://doi.org/10.1109/11.868934
  3. W. M. Moh and Y. Chen, "Multicasting flow control for hybrid wired/wireless ATM networks," Performance Evaluation, Vol.40, pp.161-194, Mar., 2000. https://doi.org/10.1016/S0166-5316(99)00074-7
  4. J. C. Principe, D. Xu and J. Fisher, Information Theoretic Learning in: S. Haykin, Unsupervised Adaptive Filtering, Wiley, (New York, USA), pp.265-319, 2000.
  5. L. Wasserman, All of Statistics: A Concise Course in Statistical Inference. Springer Texts in Statistics, 2005.
  6. S. Kullback, Information Theory and Statistics, Dover Publications. (New York, USA), 1968.
  7. D. Erdogmus, Y. Rao and J. C. Principe, "Supervised Training of Adaptive Systems with Partially Labeled Data," Proceedings of the International Conference on ASSP, Apr. pp.v321-v324, 2005.
  8. K. H. Jeong, J. W. Xu, D. Erdogmus, and J. C. Principe, "A new classifier based on information theoretic learning with unlabeled data," Neural Networks, 18, pp.719-726, 2005. https://doi.org/10.1016/j.neunet.2005.06.018
  9. N. Kim and L. Yang, "A New Criterion of Information Theoretic Optimization and Application to Blind Channel Equalization," Journal of Korean Society for Internet Information, Vol.10, No.1, pp.11-17, Feb., 2009.
  10. I. Santamaria, P. P. Pokharel, and J. C. Principe, "Generalized Correlation Function: Definition, Properties, and Application to Blind Equalization," Trans. on Signal Processing, Vol.54, No.6, pp.2187-2198, Jun., 2006. https://doi.org/10.1109/TSP.2006.872524
  11. Weifeng Liu, P. P. Pokharel, and J. C. Principe, "Correntropy: Properties and Applications in Non-Gaussian Signal Processing," IEEE Trans. Signal Processing, Vol.55, No.11, pp.5286- 5298, Nov., 2007. https://doi.org/10.1109/TSP.2007.896065
  12. D. Erdogmus, and J.C. Principe, "An Entropy Minimization algorithm for Supervised Training of Nonlinear Systems," IEEE Trans. Signal Processing, Vol.50, pp.1780-1786, July, 2002. https://doi.org/10.1109/TSP.2002.1011217
  13. S. Haykin, Adaptive Filter Theory. Prentice Hall. (Upper Saddle River), 4th edition, 2001.