국부 통계 특성 및 일반화된 Gaussian 필터를 이용한 적응 노이즈 제거 방식

An Adaptive Noise Removal Method Using Local Statistics and Generalized Gaussian Filter

  • 송원선 (숭실대학교 정보통신전자공학부) ;
  • 응웬뚜안안 (숭실대학교 정보통신전자공학부) ;
  • 홍민철 (숭실대학교 정보통신전자공학부)
  • 발행 : 2010.01.31

초록

본 논문에서는 국부 통계 및 일반화된 Gaussian 필터를 이용한 적응 노이즈 제거 방식으로, 인간 시각 시스템 기반의 국부 통계 특성을 이용하여 적응적으로 노이즈 검출하는 기법과 검출된 노이즈를 효과적으로 제거하기 위한 일반화된 Gaussian 필터 기법에 대해 제안한다. 제안방식의 성능을 기존 방식과 비교하여 객관적, 주관적 성능이 우수함을 확인할 수 있었다.

In this paper, we present an adaptive noise removal method using local statistics and generalized Gaussian filter. we propose a generalized Gaussian filter for removing noise effectively and detecting noise adaptively using local statistics based human visual system. The simulation results show the objective and subjective capabilities of the proposed algorithm.

키워드

참고문헌

  1. Gonzalo R. Arce, Nonlinear Signal Processing: A Statistical Approach, John Wiley & Sons, Inc., Hoboken, New Jersey, 2004.
  2. T. A. Nodes, N. C. Gallagher, "Median filters: Some modifications and their Properties," IEEE Trans. Acoustics, Speech and Signal Processing, ASSP30, pp. 739-746, 1982.
  3. R. Yang, L. Lin, M. Gabbouj, J. Astola, and Y. Neuvo, "Optimal weighted median filters under structural constrains," IEEE Trans. Signal Processing, Vol. 43, pp. 591-604, Mar 1995. https://doi.org/10.1109/78.370615
  4. T. Song, M. Gabbouj, and Y. Neuvo, "Center weighted median filters: Some properties and applications in image processing," Signal Processing, Vol. 35, No. 3, pp. 213-229, 1994. https://doi.org/10.1016/0165-1684(94)90212-7
  5. Z. Wang, and D. Zang, "Progressive switching median filter for removal of impulse noise from highly corrupted images," IEEE Trans., Circuits System II, Vol. 46, No. 1, pp.78-80, 1999. https://doi.org/10.1109/82.749102
  6. J. B. Bednar, and T. K. Watt, "Alpha-Trimmed Means and their relationship to median Filter," IEEE Trans. on Acoustics, Speech and Signal Processing, 4Vol. 32, pp. 145-153, 1987.
  7. K. S. Srinivasan and D. Ebenezer, "A New fast and efficient decision-based algorithm for removal of high-density impulse noises," IEEE Signal Processing Letters, Vol. 14, No. 3, March 2007.
  8. J. R. Mohammed, "An improved median filter based on efficient noise detection for high quality image restoration," AICMS, Modeling & Simulation, pp.217-331, 2008.
  9. M. S. Nair, K. Revathy, and R. Tatavarti, " An improved decision-based algorithm for impulse noise removal," CISP, Image and Signal Processing, pp.426-431, 2008.