DOI QR코드

DOI QR Code

Conversion of Shrimp Shell by Using Serratia sp. TKU017 Fermentation for the Production of Enzymes and Antioxidants

  • Wang, San-Lang (Graduate Institute of Life Sciences, Tamkang University) ;
  • Li, Jeng-Yu (Graduate Institute of Life Sciences, Tamkang University) ;
  • Liang, Tzu-Wen (Life Science Development Center, Tamkang University) ;
  • Hsieh, Jia-Lin (Graduate Institute of Life Sciences, Tamkang University) ;
  • Tseng, Wan-Nine (Graduate Institute of Life Sciences, Tamkang University)
  • Published : 2010.01.31

Abstract

A chitinase (CHT) and a protease (PRO) were purified from the culture supernatant of Serratia sp. TKU017, with shrimp shell as the sole carbon/nitrogen source. The molecular masses of CHT and PRO determined by SDS-PAGE were approximately 65 kDa and 53 kDa, respectively. CHT was inhibited by $Mn^{2+}$ and $Cu^{2+}$, and PRO was inhibited by most tested divalent metals and EDTA. The optimum pH, optimum temperature, pH stability, and thermal stability of CHT and PRO were pH 5, $50^{\circ}C$, pH 5-7, and <$50^{\circ}C$, and pH 9, $40^{\circ}C$, pH 5-11, and <$40^{\circ}C$, respectively. PRO retained 95% of its protease activity in the presence of 0.5 mM SDS. The result demonstrates that PRO is an SDS-resistant protease and probably has a rigid structure. The $4^{th}$-day supernatant showed the strongest antioxidant activity (70%, DPPH scavenging ability) and the highest total phenolic content ($196{\pm}6.2\;{\mu}g$ of gallic acid equiv./ml). Significant associations between the antioxidant potency and the total phenolic content, as well as between the antioxidant potency and free amino groups, were found for the supernatant. With this method, we have shown that shrimp shell wastes can be utilized and it is effective in the production of enzymes and antioxidants, facilitating its potential use in industrial applications and functional foods.

Keywords

References

  1. Banik, R. M. and M. Prakash. 2004. Laundry detergent compatibility of the alkaline protease from Bacillus cereus. Microbiol. Res. 159: 135-140. https://doi.org/10.1016/j.micres.2004.01.002
  2. Bhaskar, N., E. S. Sudeepa, H. N. Rashmi, and A. Tamil Selvi. 2007. Partial purification and characterization of protease of Bacillus proteolyticus CFR3001 isolated from fish processing waste and its antibacterial activities. Biores. Technol. 98: 2758-2764. https://doi.org/10.1016/j.biortech.2006.09.033
  3. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Brurberg, M. B., I. F. Nes, and V. G. H. Eijsink. 1996. Comparative studies of chitinases A and B from Serratia marcescens. Microbiology 142: 1581-1589. https://doi.org/10.1099/13500872-142-7-1581
  5. Canadanovic-Brunet, J. M., S. M. Djilas, G. S. Cetkovic, V. T. Tumbas, A. I. Mandic, and V. M. Canadanovic. 2006. Antioxidant activities of different Teucrium montanum L. extracts. Int. J. Food Sci. Technol. 41: 667-673. https://doi.org/10.1111/j.1365-2621.2006.01133.x
  6. Diouf, P. N., T. Stevanovic, and A. Cloutier. 2009. Study on chemical composition, antioxidant and anti-inflammatory activities of hot water extract from Picea mariana bark and its proanthocyanidin-rich fractions. Food Chem. 113: 897-902. https://doi.org/10.1016/j.foodchem.2008.08.016
  7. Farombi, E. O., G. Britton, and G. O. Emerole. 2000. Evaluation of the antioxidant activity and partial characterisation of extracts from browned yam flour diet. Food Res. Int. 33: 493-499. https://doi.org/10.1016/S0963-9969(00)00074-0
  8. Frankowski, J., M. Lorito, F. Scala, R. Schmid, G. Berg, and H. Bahl. 2001. Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol. 176: 421-426. https://doi.org/10.1007/s002030100347
  9. Green, A. T., M. G. Healy, and A. Healy. 2005. Production of chitinolytic enzymes by Serratia marcescens QMB1466 using various chitinous substrates. J. Chem. Technol. Biotechnol. 80: 28-34. https://doi.org/10.1002/jctb.1145
  10. He, H., X. Chen, C. Sun, Y. Zhang, and P. Gao. 2006. Preparation and functional evaluation of oligopeptide-enriched hydrolysate from shrimp (Acetes chinensis) treated with crude protease from Bacillus sp. SM98011. Biores. Technol. 97: 385-390. https://doi.org/10.1016/j.biortech.2005.03.016
  11. Heussen, C. and E. B. Dowdle. 1980. Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal. Biochem. 102: 196-202. https://doi.org/10.1016/0003-2697(80)90338-3
  12. Imoto, T. and K. Yagishita. 1971. A simple activity measurement of lysozyme. Agric. Biol. Chem. 35: 1154-1156. https://doi.org/10.1271/bbb1961.35.1154
  13. Julkunen-Tiitto, R. 1985. Phenolic constituents in the leaves of Northern willows: Methods for the analysis of certain phenolics. J. Agric. Food Chem. 33: 213-217. https://doi.org/10.1021/jf00062a013
  14. Kadokura, K., A. Rokutani, M. Yamamoto, T. Ikegami, H. Sugita, S. Itoi, W. Hakamata, T. Oku, and T. Nishio. 2007. Purification and characterization of Vibrio parahaemolyticus extracellular chitinase and chitin oligosaccharide deacetylase involved in the production of heterodisaccharide from chitin. Appl. Microbiol. Biotechnol. 75: 357-365. https://doi.org/10.1007/s00253-006-0831-6
  15. Kim, S. and E. Mendis. 2006. Bioactive compounds from marine processing byproducts - A review. Food Res. Int. 39: 383-393. https://doi.org/10.1016/j.foodres.2005.10.010
  16. Kim, H. S., K. N. Timmis, and P. N. Golyshin. 2007. Characterization of a chitinolytic enzyme from Serratia sp. KCK isolated from kimchi juice. Appl. Microbiol. Biotechnol. 75: 1275-1283. https://doi.org/10.1007/s00253-007-0947-3
  17. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  18. Lee, K. H., P. M. Lee, Y. S. Siaw, and K. Morihara. 1993. Kinetics of aspartame precursor synthesis catalysed by Pseudomonas aeruginosa elastase. J. Chem. Technol. Biotechnol. 56: 375-381.
  19. Liang, T. W., Y. J. Chen, Y. H. Yen, and S. L. Wang. 2007. The antitumor activity of the hydrolysates of chitinous materials hydrolyzed by crude enzyme from Bacillus amyloliquefaciens V656. Process Biochem. 42: 527-534. https://doi.org/10.1016/j.procbio.2006.10.005
  20. Lin, H. Y. and C. C. Chou. 2004. Antioxidant activities of watersoluble disaccharide chitosan derivatives. Food Res. Int. 37: 883-889. https://doi.org/10.1016/j.foodres.2004.04.007
  21. Nawani, N. N. and B. P. Kapadnis. 2001. One-step purification of chitinase from Serratia marcescens NK1, a soil isolate. J. Appl. Microbiol. 90: 803-808. https://doi.org/10.1046/j.1365-2672.2001.01308.x
  22. Pinero Estrada, J. E., P. Bermejo Besco's, and A. M. Villar del Fresno. 2001. Antioxidant activity of different fractions of Spirulina platensis protean extract. Il Farmaco 56: 497-500. https://doi.org/10.1016/S0014-827X(01)01084-9
  23. Roberts, D. P., L. F. McKenna, D. K. Lakshman, S. L. F. Meyer, H. Kong, J. T. Souza, et al. 2007. Suppression of dumping-off of cucumber caused by Pythium ultimum with live cells and extracts of Serratia marcescens N4-5. Soil Biol. Biochem. 39: 2275-2288. https://doi.org/10.1016/j.soilbio.2007.03.029
  24. Romero, F. J., L. A. Garcia, J. A. Salas, M. Diaz, and L. M. Quiros. 2001. Production, purification and partial characterization of two extracellular proteases from Serratia marcescens grown in whey. Process Biochem. 36: 507-515. https://doi.org/10.1016/S0032-9592(00)00221-1
  25. Sakurai, K., T. Funaguma, and A. Hara. 1995. Studies on chitinases produced by Serratia sp. isolated from soil. Meijodai Nogakuho 31: 21-31.
  26. Salamone, P. R. and R. J. Wodzinski. 1997. Production, purification and characterization of a 50-kDa extracellular metalloprotease from Serratia marcescens. Appl. Microbiol. Biotechnol. 48: 317-324. https://doi.org/10.1007/s002530051056
  27. Seymour, T. A., S. J. Li, and M. T. Morrissey. 1996. Characterisation of a natural antioxidant from shrimp shell waste. J. Agric. Food Chem. 44: 682-685. https://doi.org/10.1021/jf950597f
  28. Shikha, A. S. and N. S. Darmwal. 2007. Improve production of alkaline protease from a mutant of alkalophilic Bacillus pantotheneticus using molasses as a substrate. Biores. Technol. 98: 881-885. https://doi.org/10.1016/j.biortech.2006.03.023
  29. Shimada, K., K. Fujikawa, K. Yahara, and T. Nakamura. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40: 945-948. https://doi.org/10.1021/jf00018a005
  30. Suzuki, K., T. Mikami, Y. Okawa, A. Tokoro, S. Suzuki, and M. Suzuki. 1986. Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydr. Res. 151: 403-408. https://doi.org/10.1016/S0008-6215(00)90359-8
  31. Suzuki, K., N. Sugawara, M. Suzuki, T. Uchiyama, F. Katouno, N. Nikaidou, and T. Watanabe. 2002. Chitinases A, B, and C1 of Serratia marcescens 2170 produced by recombinant Escherichia coli: enzymatic properties and synergism on chitin degradation. Biosci. Biotech. Biochem. 66: 1075-1083. https://doi.org/10.1271/bbb.66.1075
  32. Synowiecki, J. and N.A.A.Q. Al-Khateeb. 2000. The recovery of protein hydrolysate during Enzymatic isolation of chitin from shrimp Crangon crangon processing discards. Food Chem. 68: 147-152. https://doi.org/10.1016/S0308-8146(99)00165-X
  33. Tan, S. C., E. Khor, T. K. Tan, and S. M. Wong. 1998. The degree of deacetylation of chitosan: Advocating the first derivative UV-spectrophotometry method of determination. Talanta 45: 713-719. https://doi.org/10.1016/S0039-9140(97)00288-9
  34. Tao, K., Z. Long, K. Liu, Y. Tao, and S. Liu. 2006. Purification and properties of a novel insecticidal protein from the locust pathogen Serratia marcescens HR-3. Curr. Microbiol. 52: 45-49. https://doi.org/10.1007/s00284-005-0089-8
  35. Todd, E. W. 1949. Quantitative studies on the total plasmin and trypsin inhibitor of human blood serum. J. Exp. Med. 39: 295-308.
  36. Ulrich, B. 1994. Crystal structure of the 50 kDa metallo protease from Serratia marcescens. J. Mol. Biol. 242: 244-251. https://doi.org/10.1006/jmbi.1994.1576
  37. Wang, S. L., T. Y. Kao, C. L. Wang, Y. H. Yen, M. K. Chern, and Y. H. Chen. 2006. A solvent stable metalloprotease produced by Bacillus sp. TKU004 and its application in the deproteinization of squid pen for ${\beta}$-chitin preparation. Enzyme Microb. Technol. 39: 724-731. https://doi.org/10.1016/j.enzmictec.2005.12.007
  38. Wang, S. L., T. Y. Lin, Y. H. Yen, H. F. Liao, and Y. J. Chen. 2006. Bioconversion of shellfish chitin wastes for the production of Bacillus subtilis W-118 chitinase. Carbohydr. Res. 341: 2507-2515. https://doi.org/10.1016/j.carres.2006.06.027
  39. Wang, S. L., H. T. Lin, T. W. Liang, Y. J. Chen, Y. H. Yen, and S. P. Guo. 2008. Reclamation of chitinous materials by bromelain for the preparation of antitumor and antifungal materials. Biores. Technol. 99: 4386-4393. https://doi.org/10.1016/j.biortech.2007.08.035
  40. Wang, S. L., C. L. Lin, T. W. Liang, K. C. Liu, and Y. H. Kuo. 2009. Conversion of squid pen by Serratia ureilytica for the production of enzymes and antioxidants. Biores. Technol. 100: 316-323. https://doi.org/10.1016/j.biortech.2008.06.026
  41. Wang, S. L., W. T. Hsu, T. W. Liang, Y. H. Yen, and C. L. Wang. 2008. Purification and characterization of three keratinolytic metalloproteases produced by Chryseobacterium indologenes TKU014 in a shrimp shell powder medium. Biores. Technol. 99: 5679-5686. https://doi.org/10.1016/j.biortech.2007.10.024
  42. Wang, S. L., C. Y. Wang, and T. Y. Huang. 2008. Microbial reclamation of squid pen for the production of a novel extracellular serine protease by Lactobacillus paracasei subsp. paracasei TKU012. Biores. Technol. 99: 3411-3417. https://doi.org/10.1016/j.biortech.2007.08.016
  43. Wang, S. L., I. L. Shin, T. W. Liang, and C. H. Wang. 2002. Purification and characterization of two antifungal chitinases extracellularly produced by Bacillus amyloliquefaciens V656 in a shrimp and crab shell powder medium. J. Agric. Food Chem. 50: 2241-2248. https://doi.org/10.1021/jf010885d
  44. Wang, S. L., J. H. Peng, T. W. Liang, and K. C. Liu. 2008. Purification and characterization of a chitosanase from Serratia marcescens TKU011. Carbohydr. Res. 343: 1316-1323. https://doi.org/10.1016/j.carres.2008.03.030
  45. Xing, R., H. Yu, S. Liu, W. Zhang, Q. Zhang, and Z. Li. 2005. Antioxidative activity of differently regioselective chitosan sulfates in vitro. Bioorg. Med. Chem. 13: 1387-1392. https://doi.org/10.1016/j.bmc.2004.11.002
  46. Yoshimoto, T. 2007. Biochemistry and structural biology of microbial enzymes and their medical applications. Yakugaku Zasshi 127: 1035-1045. https://doi.org/10.1248/yakushi.127.1035

Cited by

  1. Membrane Bioreactor Technology for the Development of Functional Materials from Sea-Food Processing Wastes and Their Potential Health Benefits vol.1, pp.4, 2010, https://doi.org/10.3390/membranes1040327
  2. Bioprocessing shrimp shells for rat intestinal α-glucosidase inhibitor and its effect on reducing blood glucose in a mouse model vol.45, pp.10, 2010, https://doi.org/10.1007/s11164-019-03869-2
  3. Production of Thermophilic Chitinase by Paenibacillus sp. TKU052 by Bioprocessing of Chitinous Fishery Wastes and Its Application in N-acetyl-D-glucosamine Production vol.13, pp.18, 2010, https://doi.org/10.3390/polym13183048