DOI QR코드

DOI QR Code

A Brief Overview of Escherichia coli O157:H7 and Its Plasmid O157

  • Lim, Ji-Youn (Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho) ;
  • Yoon, Jang-W. (Advanced Human Resource and Research Group for Medical Science (BK21), Konkuk University, School of Medicine) ;
  • Hovde, Carolyn J. (Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho)
  • Published : 2010.01.31

Abstract

Enterohemorrhagic Escherichia coli O157:H7 is a major foodborne pathogen causing severe disease in humans worldwide. Healthy cattle are a reservoir of E. coli O157:H7, and bovine food products and fresh produce contaminated with bovine waste are the most common sources for disease outbreaks in the United States. E. coli O157:H7 also survives well in the environment. The abilities to cause human disease, colonize the bovine gastrointestinal tract, and survive in the environment require that E. coli O157:H7 adapt to a wide variety of conditions. Three major virulence factors of E. coli O157:H7 have been identified including Shiga toxins, products of the pathogenicity island called the locus of enterocyte effacement, and products of the F-like plasmid pO157. Among these virulence factors, the role of pO157 is least understood. This review provides a board overview of E. coli O157:H7 with an emphasis on pO157.

Keywords

References

  1. Banatvala, N., P. M. Griffin, K. D. Greene, T. J. Barrett, W. F. Bibb, J. H. Green, and J. G. Wells. 2001. The United States National Prospective Hemolytic Uremic Syndrome Study: Microbiologic, serologic, clinical, and epidemiologic findings. J. Infect. Dis. 183: 1063-1070. https://doi.org/10.1086/319269
  2. Barker, J., T. J. Humphrey, and M. W. Brown. 1999. Survival of Escherichia coli O157 in a soil protozoan: Implications for disease. FEMS Microbiol. Lett. 173: 291-295. https://doi.org/10.1111/j.1574-6968.1999.tb13516.x
  3. Barrett, T. J., H. Lior, J. H. Green, R. Khakhria, J. G. Wells, B. P. Bell, K. D. Greene, J. Lewis, and P. M. Griffin. 1994. Laboratory investigation of a multistate food-borne outbreak of Escherichia coli O157:H7 by using pulsed-field gel electrophoresis and phage typing. J. Clin. Microbiol. 32: 3013-3017.
  4. Bauer, M. E. and R. A. Welch. 1996. Characterization of an RTX toxin from enterohemorrhagic Escherichia coli O157:H7. Infect. Immun. 64: 167-175.
  5. Benjamin, M. M. and A. R. Datta. 1995. Acid tolerance of enterohemorrhagic Escherichia coli. Appl. Environ. Microbiol. 61: 1669-1672.
  6. Boerlin, P., S. A. McEwen, F. Boerlin-Petzold, J. B. Wilson, R. P. Johnson, and C. L. Gyles. 1999. Associations between virulence factors of Shiga toxin-producing Escherichia coli and disease in humans. J. Clin. Microbiol. 37: 497-503.
  7. Brashears, M. M., M. L. Galyean, G. H. Loneragan, J. E. Mann, and K. Killinger-Mann. 2003. Prevalence of Escherichia coli O157:H7 and performance by beef feedlot cattle given Lactobacillus direct-fed microbials. J. Food Prot. 66: 748-754.
  8. Brunder, W., H. Schmidt, and H. Karch. 1997. EspP, a novel extracellular serine protease of enterohaemorrhagic Escherichia coli O157:H7 cleaves human coagulation factor V. Mol. Microbiol. 24: 767-778. https://doi.org/10.1046/j.1365-2958.1997.3871751.x
  9. Brunder, W., H. Schmidt, and H. Karch. 1996. KatP, a novel catalase-peroxidase encoded by the large plasmid of enterohaemorrhagic Escherichia coli 0157:H7. Microbiology 142: 3305-3315. https://doi.org/10.1099/13500872-142-11-3305
  10. Burland, V., Y. Shao, N. T. Perna, G. Plunkett, H. J. Sofia, and F. R. Blattner. 1998. The complete DNA sequence and analysis of the large virulence plasmid of Escherichia coli O157:H7. Nucl. Acids Res. 26: 4196-4204. https://doi.org/10.1093/nar/26.18.4196
  11. Caprioli, A., S. Morabito, H. Brugere, and E. Oswald. 2005. Enterohaemorrhagic Escherichia coli: Emerging issues on virulence and modes of transmission. Vet. Res. 36: 289-311. https://doi.org/10.1051/vetres:2005002
  12. Castanie-Cornet, M. P., T. A. Penfound, D. Smith, J. F. Elliott, and J. W. Foster. 1999. Control of acid resistance in Escherichia coli. J. Bacteriol. 181: 3525-3535.
  13. Cho, S., J. B. Bender, F. Diez-Gonzalez, C. P. Fossler, C. W. Hedberg, J. B. Kaneene, P. L. Ruegg, L. D. Warnick, and S. J. Wells. 2006. Prevalence and characterization of Escherichia coli O157 isolates from Minnesota dairy farms and county fairs. J. Food Prot. 69: 252-259.
  14. Cray, W. C. Jr. and H. W. Moon. 1995. Experimental infection of calves and adult cattle with Escherichia coli O157:H7. Appl. Environ. Microbiol. 61: 1586-1590.
  15. Delahay, R. M., G. Frankel, and S. Knutton. 2001. Intimate interactions of enteropathogenic Escherichia coli at the host cell surface. Curr. Opin. Infect. Dis. 14: 559-565. https://doi.org/10.1097/00001432-200110000-00009
  16. Deng, W., J. L. Puente, S. Gruenheid, Y. Li, B. A. Vallance, A. Vazquez, et al. 2004. Dissecting virulence: Systematic and functional analyses of a pathogenicity island. Proc. Natl. Acad. Sci. U.S.A. 101: 3597-3602. https://doi.org/10.1073/pnas.0400326101
  17. Dobrindt, U., F. Agerer, K. Michaelis, A. Janka, C. Buchrieser, M. Samuelson, et al. 2003. Analysis of genome plasticity in pathogenic and commensal Escherichia coli isolates by use of DNA arrays. J. Bacteriol. 185: 1831-1840. https://doi.org/10.1128/JB.185.6.1831-1840.2003
  18. Dunn, J. R., J. E. Keen, and R. A. Thompson. 2004. Prevalence of Shiga-toxigenic Escherichia coli O157:H7 in adult dairy cattle. J. Am. Vet. Med. Assoc. 224: 1151-1158. https://doi.org/10.2460/javma.2004.224.1151
  19. Dziva, F., A. Mahajan, P. Cameron, C. Currie, I. J. McKendrick, T. S. Wallis, D. G. E. Smith, and M. P. Stevens. 2007. EspP, a type V-secreted serine protease of enterohaemorrhagic Escherichia coli O157:H7, influences intestinal colonization of calves and adherence to bovine primary intestinal epithelial cells. FEMS Microbiol. Lett. 271: 258-264. https://doi.org/10.1111/j.1574-6968.2007.00724.x
  20. Elliott, S. J., V. Sperandio, J. A. Giron, S. Shin, J. L. Mellies, L. Wainwright, S. W. Hutcheson, T. K. McDaniel, and J. B. Kaper. 2000. The locus of enterocyte effacement (LEE)-encoded regulator controls expression of both LEE- and non-LEE-encoded virulence factors in enteropathogenic and enterohemorrhagic Escherichia coli. Infect. Immun. 68: 6115-6126. https://doi.org/10.1128/IAI.68.11.6115-6126.2000
  21. Frenzen, P. D., A. Drake, and F. J. Angulo. 2005. Economic cost of illness due to Escherichia coli O157 infections in the United States. J. Food Prot. 68: 2623-2630.
  22. Frost, L. S., R. Leplae, A. O. Summers, and A. Toussaint. 2005. Mobile genetic elements: The agents of open source evolution. Nat. Rev. Microbiol. 3: 722-732. https://doi.org/10.1038/nrmicro1235
  23. Gansheroff, L. J. and A. D. O'Brien. 2000. Escherichia coli O157:H7 in beef cattle presented for slaughter in the US: Higher prevalence rates than previously estimated. 97: 2959-2961. https://doi.org/10.1073/pnas.97.7.2959
  24. Griffin, P. M. and R. V. Tauxe. 1991. The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli, and the associated hemolytic uremic syndrome. Epidemiol. Rev. 13: 60-98.
  25. Grys, T. E., M. B. Siegel, W. W. Lathem, and R. A. Welch. 2005. The StcE protease contributes to intimate adherence of enterohemorrhagic Escherichia coli O157:H7 to host cells. Infect. Immun. 73: 1295-1303. https://doi.org/10.1128/IAI.73.3.1295-1303.2005
  26. Hales, B. A., C. A. Hart, R. M. Batt, and J. R. Saunders. 1992. The large plasmids found in enterohemorrhagic and enteropathogenic Escherichia coli constitute a related series of transfer-defective Inc F-IIA replicons. Plasmid 28: 183-193. https://doi.org/10.1016/0147-619X(92)90050-K
  27. Hancock, D. D., T. E. Besser, D. H. Rice, D. E. Herriott, and P. I. Tarr. 1997. A longitudinal study of Escherichia coli O157 in fourteen cattle herds. Epidemiol. Infect. 118: 193-195. https://doi.org/10.1017/S0950268896007212
  28. Heuvelink, A. E., C. van Heerwaarden, J. T. Zwartkruis-Nahuis, R. van Oosterom, K. Edink, Y. T. van Duynhoven, and E. de Boer. 2002. Escherichia coli O157 infection associated with a petting zoo. Epidemiol. Infect. 129: 295-302.
  29. Jacewicz, M. S., D. W. Acheson, D. G. Binion, G. A. West, L. L. Lincicome, C. Fiocchi, and G. T. Keusch. 1999. Responses of human intestinal microvascular endothelial cells to Shiga toxins 1 and 2 and pathogenesis of hemorrhagic colitis. Infect. Immun. 67: 1439-1444.
  30. Jiang, X., J. Morgan, and M. P. Doyle. 2002. Fate of Escherichia coli O157:H7 in manure-amended soil. Appl. Environ. Microbiol. 68: 2605-2609. https://doi.org/10.1128/AEM.68.5.2605-2609.2002
  31. Johnson, R. P., J. B. Wilson, P. Michel, K. Rahn, S. A. Renwick, C. L. Gyles, and J. S. Spika. 1999. Human infection with verotoxigenic Escherichia coli associated with exposure to farms and rural environments, pp. 147-168. In C. S. Stewart and H. J. Flints (eds.). Escherichia coli O157 in Farm Animals. CABI Publishing, Wallingford, U.K.
  32. Kaniuk, N. A., E. Vinogradov, J. Li, M. A. Monteiro, and C. Whitfield. 2004. Chromosomal and plasmid-encoded enzymes are required for assembly of the R 3-type core oligosaccharide in the lipopolysaccharide of Escherichia coli O157:H7. J. Biol. Chem. 279: 31237-31250. https://doi.org/10.1074/jbc.M401879200
  33. Kaper, J. B., J. P. Nataro, and H. L. Mobley. 2004. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2: 123-140. https://doi.org/10.1038/nrmicro818
  34. Karmali, M. A., B. T. Steele, M. Petric, and C. Lim. 1983. Sporadic cases of haemolytic-uraemic syndrome associated with faecal cytotoxin and cytotoxin-producing Escherichia coli in stools. Lancet 1: 619-620.
  35. Kim, S. H., W. Jia, R. E. Bishop, and C. Gyles. 2004. An msbB homologue carried in plasmid pO157 encodes an acyltransferase involved in lipid A biosynthesis in Escherichia coli O157:H7. Infect. Immun. 72: 1174-1180. https://doi.org/10.1128/IAI.72.2.1174-1180.2004
  36. Klapproth, J. M. A., I. C. A. Scaletsky, B. P. McNamara, L. C. Lai, C. Malstrom, S. P. James, and M. S. Donnenberg. 2000. A large toxin from pathogenic Escherichia coli strains that inhibits lymphocyte activation. Infect. Immun. 68: 2148-2155. https://doi.org/10.1128/IAI.68.4.2148-2155.2000
  37. Lathem, W. W., T. E. Grys, S. E. Witowski, A. G. Torres, J. B. Kaper, P. I. Tarr, and R. A. Welch. 2002. StcE, a metalloprotease secreted by Escherichia coli O157:H7, specifically cleaves C1 esterase inhibitor. Mol. Microbiol. 45: 277-288. https://doi.org/10.1046/j.1365-2958.2002.02997.x
  38. LeJeune, J. T., T. E. Besser, and D. D. Hancock. 2001. Cattle water troughs as reservoirs of Escherichia coli O157. Appl. Environ. Microbiol. 67: 3053-3057. https://doi.org/10.1128/AEM.67.7.3053-3057.2001
  39. Lim, J. Y., J. Li, H. Sheng, T. E. Besser, K. Potter, and C. J. Hovde. 2007. Escherichia coli O157:H7 colonization at the rectoanal junction of long-duration culture-positive cattle. Appl. Environ. Microbiol. 73: 1380-1382. https://doi.org/10.1128/AEM.02242-06
  40. Lim, J. Y., H. Sheng, K. S. Seo, Y. H. Park, and C. J. Hovde. 2007. Characterization of an Escherichia coli O157:H7 Plasmid O157 deletion mutant and its survival and persistence in cattle. Appl. Environ. Microbiol. 73: 2037-2047. https://doi.org/10.1128/AEM.02643-06
  41. Makino, K., K. Ishii, T. Yasunaga, M. Hattori, K. Yokoyama, C. H. Yutsudo, et al. 1998. Complete nucleotide sequences of 93-kb and 3.3-kb plasmids of an enterohemorrhagic Escherichia coli O157:H7 derived from Sakai outbreak. DNA Res. 5: 1-9. https://doi.org/10.1093/dnares/5.1.1
  42. Maule, A. 2000. Survival of verocytotoxigenic Escherichia coli O157 in soil, water and on surfaces. Symp. Ser. Soc. Appl. Microbiol. 29: 71S-78S.
  43. Mead, P. S., L. Slutsker, V. Dietz, L. F. McCaig, J. S. Bresee, C. Shapiro, P. M. Griffin, and R. V. Tauxe. 1999 Food-related illness and death in the United States. Emerg. Infect. Dis. 5: 607-625. https://doi.org/10.3201/eid0505.990502
  44. Melton-Celsa, A. R., S. C. Darnell, and A. D. O'Brien. 1996. Activation of Shiga-like toxins by mouse and human intestinal mucus correlates with virulence of enterohemorrhagic Escherichia coli O91:H21 isolates in orally infected, streptomycin-treated mice. Infect. Immun. 64: 1569-1576.
  45. Michino, H., K. Araki, S. Minami, S. Takaya, N. Sakai, M. Miyazaki, A. Ono, and H. Yanagawa. 1999. Massive outbreak of Escherichia coli O157:H7 infection in school children in Sakai City, Japan, associated with consumption of white radish sprouts. Am. J. Epidemiol. 150: 787-796. https://doi.org/10.1093/oxfordjournals.aje.a010082
  46. Morabito, S., R. Tozzoli, E. Oswald, and A. Caprioli. 2003. A mosaic pathogenicity island made up of the locus of enterocyte effacement and a pathogenicity island of Escherichia coli O157:H7 is frequently present in attaching and effacing E. coli. Infect. Immun. 71: 3343-3348. https://doi.org/10.1128/IAI.71.6.3343-3348.2003
  47. Nataro, J. P. and J. B. Kaper. 1998. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11: 142-201.
  48. Naylor, S. W., J. C. Low, T. E. Besser, A. Mahajan, G. J. Gunn, M. C. Pearce, I. J. McKendrick, D. G. E. Smith, and D. L. Gally. 2003. Lymphoid follicle-dense mucosa at the terminal rectum is the principal site of colonization of enterohemorrhagic Escherichia coli O157:H7 in the bovine host. Infect. Immun. 71: 1505-1512. https://doi.org/10.1128/IAI.71.3.1505-1512.2003
  49. Orndorff, P. E., Y. Wang, S. H. Huang, C. A. Wass, M. F. Stins, and K. S. Kim. 1999. The gene locus yijP contributes to Escherichia coli K1 invasion of brain microvascular endothelial cells. Infect. Immun. 67: 4751-4756.
  50. Ostroff, S. M., P. I. Tarr, M. A. Neill, J. H. Lewis, N. Hargrett-Bean, and J. M. Kobayashi. 1989. Toxin genotypes and plasmid profiles as determinants of systemic sequelae in Escherichia coli O157:H7 infections. J. Infect. Dis. 160: 994-998. https://doi.org/10.1093/infdis/160.6.994
  51. Paton, A. W. and J. C. Paton. 1999. Direct detection of Shiga toxigenic Escherichia coli strains belonging to serogroups O111, O157, and O113 by multiplex PCR. J. Clin. Microbiol. 37: 3362-3365.
  52. Perna, N. T., G. F. Mayhew, G. Posfai, S. Elliott, M. S. Donnenberg, J. B. Kaper, and F. R. Blattner. 1998. Molecular evolution of a pathogenicity island from enterohemorrhagic Escherichia coli O157:H7. Infect. Immun. 66: 3810-3817.
  53. Perna, N. T., G. Plunkett, V. Burland, B. Mau, J. D. Glasner, D. J. Rose, et al. 2001. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409: 529-533. https://doi.org/10.1038/35054089
  54. Peterson, W. L., P. A. Mackowiak, C. C. Barnett, M. Marling-Cason, and M. L. Haley. 1989. The human gastric bactericidal barrier: Mechanisms of action, relative antibacterial activity, and dietary influences. J. Infect. Dis. 159: 979-983. https://doi.org/10.1093/infdis/159.5.979
  55. Putonti, C., Y. Luo, C. Katili, S. Chumakov, G. E. Fox, D. Graur, and Y. Fofanov. 2006. A computational tool for the genomic identification of regions of unusual compositional properties and its utilization in the detection of horizontally transferred sequences. Mol. Biol. Evol. 23: 1863-1868. https://doi.org/10.1093/molbev/msl053
  56. Rangel, J. M., P. H. Sparling, C. Crowe, P. M. Griffin, and D. L. Swerdlow. 2005. Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982-2002. Emerg. Infect. Dis. 11: 603-609. https://doi.org/10.3201/eid1104.040739
  57. Riley, L. W., R. S. Remis, S. D. Helgerson, H. B. McGee, J. G. Wells, B. R. Davis, et al. 1983. Hemorrhagic colitis associated with a rare Escherichia coli serotype. N. Engl. J. Med. 308: 681-685. https://doi.org/10.1056/NEJM198303243081203
  58. Sanderson, M. W., T. E. Besser, J. M. Gay, C. C. Gay, and D. D. Hancock. 1999. Fecal Escherichia coli O157:H7 shedding patterns of orally inoculated calves. Vet. Microbiol. 69: 199-205. https://doi.org/10.1016/S0378-1135(99)00106-6
  59. Saxena, S. K., A. D. O'Brien, and E. J. Ackerman. 1989. Shiga toxin, Shiga-like toxin II variant, and ricin are all single-site RNA N-glycosidases of 28S RNA when microinjected into Xenopus oocytes. J. Biol. Chem. 264: 596-601.
  60. Schlech III, W. F., D. P. Chase, and A. Badley. 1993. A model of food-borne Listeria monocytogenes infection in the Sprague-Dawley rat using gastric inoculation: Development and effect of gastric acidity on infective dose. Int. J. Food Microbiol. 18: 15-24. https://doi.org/10.1016/0168-1605(93)90003-Y
  61. Schmidt, H., L. Beutin, and H. Karch. 1995. Molecular analysis of the plasmid-encoded hemolysin of Escherichia coli O157:H7 strain EDL 933. Infect. Immun. 63: 1055-1061.
  62. Schmidt, H., B. Henkel, and H. Karch. 1997. A gene cluster closely related to type II secretion pathway operons of Gram-negative bacteria is located on the large plasmid of enterohemorrhagic Escherichia coli O157 strains. FEMS Microbiol. Lett. 148: 265-272. https://doi.org/10.1111/j.1574-6968.1997.tb10299.x
  63. Schmidt, H., H. Karch, and L. Beutin. 1994. The large-sized plasmids of enterohemorrhagic Escherichia coli O157 strains encode hemolysins which are presumably members of the E. coli alpha-hemolysin family. FEMS Microbiol. Lett. 117: 189-196.
  64. Sheng, H., J. Y. Lim, H. J. Knecht, J. Li, and C. J. Hovde. 2006. Role of Escherichia coli O157:H7 virulence factors in colonization at the bovine terminal rectal mucosa. Infect. Immun. 74: 4685-4693. https://doi.org/10.1128/IAI.00406-06
  65. Shima, K., N. Yoshii, M. Akiba, K. Nishimura, M. Nakazawa, and S. Yamasaki. 2006. Comparison of PCR-RFLP and PFGE for determining the clonality of enterohemorrhagic Escherichia coli strains. FEMS Microbiol. Lett. 257: 124-131. https://doi.org/10.1111/j.1574-6968.2006.00174.x
  66. Stevens, M. P., A. J. Roe, I. Vlisidou, P. M. Van Diemen, R. M. La Ragione, A. Best, M. J. Woodward, D. L. Gally, and T. S. Wallis. 2004. Mutation of toxB and a truncated version of the efa-1 gene in Escherichia coli O157:H7 influences the expression and secretion of locus of enterocyte effacement-encoded proteins but not intestinal colonization in calves or sheep. Infect. Immun. 72: 5402-5411. https://doi.org/10.1128/IAI.72.9.5402-5411.2004
  67. Tatsuno, I., M. Horie, H. Abe, T. Miki, K. Makino, H. Shinagawa, H. Taguchi, S. Kamiya, and T. Hayashi. 2001. toxB gene on pO157 of enterohemorrhagic Escherichia coli O157:H7 is required for full epithelial cell adherence phenotype. Infect. Immun. 69: 6660-6669. https://doi.org/10.1128/IAI.69.11.6660-6669.2001
  68. Thompson, J. S., D. S. Hodge, and A. A. Borczyk. 1990. Rapid biochemical test to identify verocytotoxin-positive strains of Escherichia coli serotype O157. J. Clin. Microbiol. 28: 2165-2168.
  69. van Diemen, P. M., F. Dziva, M. P. Stevens, and T. S. Wallis. 2005. Identification of enterohemorrhagic Escherichia coli O26:H-genes required for intestinal colonization in calves. Infect. Immun. 73: 1735-1743. https://doi.org/10.1128/IAI.73.3.1735-1743.2005
  70. Varma, J. K., K. D. Greene, M. E. Reller, S. M. DeLong, J. Trottier, S. F. Nowicki, et al. 2003. An outbreak of Escherichia coli O157 infection following exposure to a contaminated building. J.A.M.A. 290: 2709-2712. https://doi.org/10.1001/jama.290.20.2709
  71. Wells, J. G., B. R. Davis, I. K. Wachsmuth, L. W. Riley, R. S. Remis, R. Sokolow, and G. K. Morris. 1983. Laboratory investigation of hemorrhagic colitis outbreaks associated with a rare Escherichia coli serotype. J. Clin. Microbiol. 18: 512-520.
  72. Wick, L. M., W. Qi, D. W. Lacher, and T. S. Whittam. 2005. Evolution of genomic content in the stepwise emergence of Escherichia coli O157:H7. J. Bacteriol. 187: 1783-1791. https://doi.org/10.1128/JB.187.5.1783-1791.2005
  73. Willshaw, G. A., H. R. Smith, T. Cheasty, P. G. Wall, and B. Rowe. 1997. Vero cytotoxin-producing Escherichia coli O157 outbreaks in England and Wales, 1995: Phenotypic methods and genotypic subtyping. Emerg. Infect. Dis. 3: 561-565. https://doi.org/10.3201/eid0304.970422
  74. Yoon, J. W. and C. J. Hovde. 2008. All blood, no stool: Enterohemorrhagic Escherichia coli O157:H7 infection. J. Vet. Sci. 9: 219-231. https://doi.org/10.4142/jvs.2008.9.3.219
  75. Yoon, J. W., J. Y. Lim, Y. H. Park, and C. J. Hovde. 2005. Involvement of the Escherichia coli O157:H7(pO157) ecf operon and lipid A myristoyl transferase activity in bacterial survival in the bovine gastrointestinal tract and bacterial persistence in farm water troughs. Infect. Immun. 73: 2367-2378. https://doi.org/10.1128/IAI.73.4.2367-2378.2005
  76. Yoon, J. W., S. A. Minnich, J. S. Ahn, Y. H. Park, A. Paszczynski, and C. J. Hovde. 2004. Thermoregulation of the Escherichia coli O157:H7 pO157 ecf operon and lipid A myristoyl transferase activity involves intrinsically curved DNA. Mol. Microbiol. 51: 419-435. https://doi.org/10.1046/j.1365-2958.2003.03827.x
  77. Yuk, H. G. and D. L. Marshall. 2004. Adaptation of Escherichia coli O157:H7 to pH alters membrane lipid composition, verotoxin secretion, and resistance to simulated gastric fluid acid. Appl. Environ. Microbiol. 70: 3500-3505. https://doi.org/10.1128/AEM.70.6.3500-3505.2004

Cited by

  1. Multilocus Sequence Typing and Virulence Factors Analysis of Escherichia coli O157 Strains in China vol.48, pp.6, 2010, https://doi.org/10.1007/s12275-010-0132-8
  2. Mechanisms of enterohemorrhagic Escherichia coli spread along the food-chain and precautionary measures vol.6, pp.4, 2010, https://doi.org/10.1007/s00003-011-0736-x
  3. Infectious colitis : vol.27, pp.1, 2011, https://doi.org/10.1097/mog.0b013e3283400755
  4. pO157_Sal, a Novel Conjugative Plasmid Detected in Outbreak Isolates of Escherichia coli O157:H7 vol.49, pp.4, 2010, https://doi.org/10.1128/jcm.02530-10
  5. What You Should Know about Escherichia Coli Infection vol.9, pp.2, 2010, https://doi.org/10.1177/1721727x1100900203
  6. Differential Gene Expression and Adherence of Escherichia coli O157:H7 In Vitro and in Ligated Pig Intestines vol.6, pp.2, 2010, https://doi.org/10.1371/journal.pone.0017424
  7. Bacteriophages carrying Shiga toxin genes: genomic variations, detection and potential treatment of pathogenic bacteria vol.6, pp.8, 2010, https://doi.org/10.2217/fmb.11.70
  8. Phage-based biocontrol strategies to reduce foodborne pathogens in foods vol.1, pp.3, 2010, https://doi.org/10.4161/bact.1.3.17629
  9. Genetic Characterization of Escherichia coli O157:H7 Strains Isolated from the One-Humped Camel (Camelus dromedarius) by Using Microarray DNA Technology vol.51, pp.3, 2010, https://doi.org/10.1007/s12033-011-9466-7
  10. The strain-specific dynamics ofEscherichia coliO157:H7 faecal shedding in cattle post inoculation vol.6, pp.None, 2010, https://doi.org/10.1080/17513758.2012.722232
  11. Phylogeny of Shiga Toxin-Producing Escherichia coli O157 Isolated from Cattle and Clinically Ill Humans vol.29, pp.8, 2010, https://doi.org/10.1093/molbev/mss072
  12. Adherence and associated virulence gene expression in acid-treated Escherichia coli O157 : H7 in vitro and in ligated pig intestine vol.158, pp.4, 2012, https://doi.org/10.1099/mic.0.056101-0
  13. Zinc–induced envelope stress diminishes type III secretion in enteropathogenic Escherichia coli vol.12, pp.None, 2010, https://doi.org/10.1186/1471-2180-12-123
  14. Lysogeny with Shiga Toxin 2-Encoding Bacteriophages Represses Type III Secretion in Enterohemorrhagic Escherichia coli vol.8, pp.5, 2010, https://doi.org/10.1371/journal.ppat.1002672
  15. Identifying Mechanisms by Which Escherichia coli O157:H7 Subverts Interferon-γ Mediated Signal Transducer and Activator of Transcription-1 Activation vol.7, pp.1, 2010, https://doi.org/10.1371/journal.pone.0030145
  16. The complex interplay between stress and bacterial infections in animals vol.155, pp.2, 2010, https://doi.org/10.1016/j.vetmic.2011.09.012
  17. Collagen-Like Proteins in Pathogenic E. coli Strains vol.7, pp.6, 2010, https://doi.org/10.1371/journal.pone.0037872
  18. Cell invasion and survival of Shiga toxin-producing Escherichia coli within cultured human intestinal epithelial cells vol.159, pp.8, 2010, https://doi.org/10.1099/mic.0.064204-0
  19. Enterohaemorrhagic Escherichia coli O157:H7 Shiga‐like toxin 1 is required for full pathogenicity and activation of the p38 mitogen‐activated protein kinase pathway in Caenorhabditis vol.15, pp.1, 2013, https://doi.org/10.1111/cmi.12030
  20. Antibiotic resistance shaping multi-level population biology of bacteria vol.4, pp.None, 2010, https://doi.org/10.3389/fmicb.2013.00015
  21. Detection and characterization of Shiga toxin-producingEscherichia coliin faeces and lymphatic tissue of free-ranging deer vol.141, pp.2, 2010, https://doi.org/10.1017/s0950268812000246
  22. Pathogen–host–environment interplay and disease emergence vol.2, pp.2, 2010, https://doi.org/10.1038/emi.2013.5
  23. Solid-state voltammetry-based electrochemical immunosensor for Escherichia coli using graphene oxide–Ag nanoparticle composites as labels vol.138, pp.12, 2013, https://doi.org/10.1039/c3an00056g
  24. Comparative genomics of enterohemorrhagic Escherichia coli O145:H28 demonstrates a common evolutionary lineage with Escherichia coli O157:H7 vol.15, pp.1, 2010, https://doi.org/10.1186/1471-2164-15-17
  25. E. coli O157 on Scottish cattle farms: Evidence of local spread and persistence using repeat cross-sectional data vol.10, pp.None, 2010, https://doi.org/10.1186/1746-6148-10-95
  26. Comparison of net growth of Shiga toxin-producing Escherichia coli strains of serogroups O26, O103, and O157 in ground meat at different temperatures vol.238, pp.1, 2010, https://doi.org/10.1007/s00217-013-2104-9
  27. Genome Sequence of Escherichia coli O157:H7 Strain 2886-75, Associated with the First Reported Case of Human Infection in the United States vol.2, pp.1, 2010, https://doi.org/10.1128/genomea.01120-13
  28. Enterohemorrhagic Escherichia coli senses low biotin status in the large intestine for colonization and infection vol.6, pp.1, 2015, https://doi.org/10.1038/ncomms7592
  29. Characterization and Survival of Environmental Escherichia coli O26 Isolates in Ground Beef and Environmental Samples vol.80, pp.4, 2010, https://doi.org/10.1111/1750-3841.12827
  30. Alteration of the Microbiota and Virulence Gene Expression in E . coli O157:H7 in Pig Ligated Intestine with and without AE Lesions vol.10, pp.6, 2010, https://doi.org/10.1371/journal.pone.0130272
  31. Future perspectives, applications and challenges of genomic epidemiology studies for food-borne pathogens: A case study of EnterohemorrhagicEscherichia coli(EHEC) of the O157:H7 serotype vol.6, pp.3, 2010, https://doi.org/10.4161/19490976.2014.969979
  32. Is Shiga Toxin-Negative Escherichia coli O157:H7 Enteropathogenic or Enterohemorrhagic Escherichia coli ? Comprehensive Molecular Analysis Using Whole-Genome Sequencing vol.53, pp.11, 2010, https://doi.org/10.1128/jcm.01899-15
  33. Identification and Characterization of Novel Compounds Blocking Shiga Toxin Expression in Escherichia coli O157:H7 vol.7, pp.None, 2010, https://doi.org/10.3389/fmicb.2016.01930
  34. Expression of Inflammatory and Cell Death Program Genes and Comet DNA Damage Assay Induced by Escherichia coli in Layer Hens vol.11, pp.6, 2010, https://doi.org/10.1371/journal.pone.0158314
  35. Effects of Rhodomyrtus tomentosa Extract on Killing Activity of Human Neutrophils and Membrane Integrity of Enterohaemorrhagic Escherichia coli O157:H7 vol.21, pp.6, 2010, https://doi.org/10.3390/molecules21060692
  36. Fructosazine, a Polyhydroxyalkylpyrazine with Antimicrobial Activity: Mechanism of Inhibition against Extremely Heat Resistant Escherichia coli vol.64, pp.45, 2016, https://doi.org/10.1021/acs.jafc.6b03755
  37. Whole-genome sequencing and comparative genomic analysis of Escherichia coli O91 strains isolated from symptomatic and asymptomatic human carriers vol.8, pp.None, 2010, https://doi.org/10.1186/s13099-016-0138-9
  38. Growth and Volatile Compounds of Escherichia coli O157:H7 on Irradiated Pork vol.39, pp.6, 2010, https://doi.org/10.1111/jfq.12254
  39. Strategies for Biofilm Inhibition and Virulence Attenuation of Foodborne Pathogen-Escherichia coli O157:H7 vol.74, pp.12, 2010, https://doi.org/10.1007/s00284-017-1314-y
  40. Antibacterial Properties of Endophytic Bacteria Isolated from a Fern Species Equisetum arvense L. Against Foodborne Pathogenic Bacteria Staphylococcus aureus and Escherichia coli O157:H7 vol.14, pp.1, 2010, https://doi.org/10.1089/fpd.2016.2192
  41. Review—New Twists in the Plot: Recent Advances in Electrochemical Genosensors for Disease Screening vol.164, pp.13, 2017, https://doi.org/10.1149/2.1401713jes
  42. The Complex Relationship between Virulence and Antibiotic Resistance vol.8, pp.1, 2010, https://doi.org/10.3390/genes8010039
  43. Delivering phage therapy per os: benefits and barriers vol.15, pp.2, 2017, https://doi.org/10.1080/14787210.2017.1265447
  44. In-silico design, expression, and purification of novel chimeric Escherichia coli O157:H7 OmpA fused to LTB protein in Escherichia coli vol.12, pp.3, 2010, https://doi.org/10.1371/journal.pone.0173761
  45. Abundance of Pathogenic Escherichia coli Virulence-Associated Genes in Well and Borehole Water Used for Domestic Purposes in a Peri-Urban Community of South Africa vol.14, pp.3, 2010, https://doi.org/10.3390/ijerph14030320
  46. IN VITRO STUDY OF CONCENTRATION-EFFECT AND TIME-COURSE PATTERN OF WHITE ALUM ON ESCHERICHIA COLI O157:H7 GROWTH vol.14, pp.2, 2010, https://doi.org/10.21010/ajtcam.v14i2.32
  47. Discovery of numerous novel small genes in the intergenic regions of the Escherichia coli O157:H7 Sakai genome vol.12, pp.9, 2010, https://doi.org/10.1371/journal.pone.0184119
  48. Chemical Composition, Antibacterial Activity, and Synergistic Effects with Conventional Antibiotics and Nitric Oxide Production Inhibitory Activity of Essential Oil from Geophila repens (L.) I.M. Jo vol.22, pp.9, 2017, https://doi.org/10.3390/molecules22091561
  49. Comparative genomic analysis of Shiga toxin-producing and non-Shiga toxin-producing Escherichia coli O157 isolated from outbreaks in Korea vol.9, pp.None, 2010, https://doi.org/10.1186/s13099-017-0156-2
  50. Comparative genomic analysis and characteristics of NCCP15740, the major type of enterotoxigenic Escherichia coli in Korea vol.9, pp.None, 2010, https://doi.org/10.1186/s13099-017-0204-y
  51. Evolutionary Context of Non–Sorbitol-Fermenting Shiga Toxin–Producing Escherichia coli O55:H7 vol.23, pp.12, 2010, https://doi.org/10.3201/eid2312.170628
  52. Genomic Analysis of Third Generation Cephalosporin Resistant Escherichia coli from Dairy Cow Manure vol.4, pp.4, 2017, https://doi.org/10.3390/vetsci4040057
  53. Bacterial contamination and health risks of drinking water from the municipal non-government managed water treatment plants vol.190, pp.11, 2010, https://doi.org/10.1007/s10661-018-7054-z
  54. Antibacterial Activities of Endophytic Bacteria Isolated from Taxus brevifolia Against Foodborne Pathogenic Bacteria vol.15, pp.5, 2010, https://doi.org/10.1089/fpd.2017.2357
  55. Global transcriptional regulation by BirA in enterohemorrhagic Escherichia coli O157:H7 vol.13, pp.7, 2010, https://doi.org/10.2217/fmb-2017-0256
  56. Differential Proteomic Analysis of Lactic Acid Bacteria— Escherichia coli O157:H7 Interaction and Its Contribution to Bioprotection Strategies in Meat vol.9, pp.None, 2010, https://doi.org/10.3389/fmicb.2018.01083
  57. Food-Associated Stress Primes Foodborne Pathogens for the Gastrointestinal Phase of Infection vol.9, pp.None, 2010, https://doi.org/10.3389/fmicb.2018.01962
  58. Pch Genes Control Biofilm and Cell Adhesion in a Clinical Serotype O157:H7 Isolate vol.9, pp.None, 2010, https://doi.org/10.3389/fmicb.2018.02829
  59. A Combined Aqueous Two-Phase System and Spot-Test Platform for the Rapid Detection of Escherichia coli O157:H7 in Milk vol.23, pp.1, 2010, https://doi.org/10.1177/2472630317731892
  60. Surface Plasmon Resonance and Bending Loss-Based U-Shaped Plastic Optical Fiber Biosensors vol.18, pp.2, 2010, https://doi.org/10.3390/s18020648
  61. A multi-omic analysis reveals the role of fumarate in regulating the virulence of enterohemorrhagic Escherichia coli vol.9, pp.3, 2010, https://doi.org/10.1038/s41419-018-0423-2
  62. Bacteriophage Isolated from Sewage Eliminates and Prevents the Establishment of Escherichia Coli Biofilm vol.8, pp.1, 2010, https://doi.org/10.15171/apb.2018.011
  63. Sulfamethoxazole – Trimethoprim represses csgD but maintains virulence genes at 30°C in a clinical Escherichia coli O157:H7 isolate vol.13, pp.5, 2010, https://doi.org/10.1371/journal.pone.0196271
  64. Whole genome shotgun sequencing revealed highly polymorphic genome regions and genes in Escherichia coli O157:H7 isolates collected from a single feedlot vol.13, pp.8, 2010, https://doi.org/10.1371/journal.pone.0202775
  65. Probiotics in Autoimmune and Inflammatory Disorders vol.10, pp.10, 2010, https://doi.org/10.3390/nu10101537
  66. Plasma membrane profiling during enterohemorrhagic E. coli infection reveals that the metalloprotease StcE cleaves CD55 from host epithelial surfaces vol.293, pp.44, 2010, https://doi.org/10.1074/jbc.ra118.005114
  67. Stress Resistance Development and Genome-Wide Transcriptional Response of Escherichia coli O157:H7 Adapted to Sublethal Thymol, Carvacrol, and trans-Cinnamaldehyde vol.84, pp.22, 2010, https://doi.org/10.1128/aem.01616-18
  68. Genetic diversity of the enterohaemolysin gene ( ehxA ) in non-O157 Shiga toxin-producing Escherichia coli strains in China vol.8, pp.None, 2010, https://doi.org/10.1038/s41598-018-22699-7
  69. Probiotic Escherichia coli inhibits biofilm formation of pathogenic E. coli via extracellular activity of DegP vol.8, pp.None, 2010, https://doi.org/10.1038/s41598-018-23180-1
  70. The influence of surface chemistry on the kinetics and thermodynamics of bacterial adhesion vol.8, pp.None, 2018, https://doi.org/10.1038/s41598-018-35343-1
  71. A novel short L-arginine responsive protein-coding gene ( laoB ) antiparallel overlapping to a CadC-like transcriptional regulator in Escherichia coli O157:H7 Sakai originated by overprinting vol.18, pp.None, 2010, https://doi.org/10.1186/s12862-018-1134-0
  72. Structure and tailspike glycosidase machinery of ORF212 from E. coli O157:H7 phage CBA120 (TSP3) vol.9, pp.None, 2010, https://doi.org/10.1038/s41598-019-43748-9
  73. Rapid, multiplexed, whole genome and plasmid sequencing of foodborne pathogens using long-read nanopore technology vol.9, pp.None, 2010, https://doi.org/10.1038/s41598-019-52424-x
  74. Identification and prevalence of in vivo -induced genes in enterohaemorrhagic Escherichia coli vol.10, pp.1, 2010, https://doi.org/10.1080/21505594.2019.1582976
  75. Multistate Outbreaks of Foodborne Illness in the United States Associated With Fresh Produce From 2010 to 2017 vol.10, pp.None, 2010, https://doi.org/10.3389/fmicb.2019.02667
  76. GLAPD: Whole Genome Based LAMP Primer Design for a Set of Target Genomes vol.10, pp.None, 2019, https://doi.org/10.3389/fmicb.2019.02860
  77. Synthesis of Novel 4-Thiazolidinone and Bis-Thiazalidin-4-One Derivatives Derived from 4-Amino-Antipyrine and Evaluated as Inhibition of Purine Metabolism Enzymes by Bacteria vol.9, pp.2, 2010, https://doi.org/10.4236/ijoc.2019.92008
  78. Correlation of Antibiotic Resistance and Restriction Mapping of Plasmid DNA Isolated from E. coli Causing Urinary Tract Infection vol.13, pp.2, 2010, https://doi.org/10.22207/jpam.13.2.31
  79. Effects of Sublethal Thymol, Carvacrol, and trans-Cinnamaldehyde Adaptation on Virulence Properties of Escherichia coli O157:H7 vol.85, pp.14, 2010, https://doi.org/10.1128/aem.00271-19
  80. Complete Genome Sequence of Enterotoxigenic Escherichia coli Podophage LL11 vol.8, pp.32, 2019, https://doi.org/10.1128/mra.00693-19
  81. Binding interaction study on human serum albumin with bactericidal gold nanoparticles synthesized from a leaf extract of Musa balbisiana: a multispectroscopic approach vol.34, pp.6, 2010, https://doi.org/10.1002/bio.3639
  82. Control of Foodborne Pathogenic Bacteria by Endophytic Bacteria Isolated from Ginkgo biloba L. vol.16, pp.10, 2010, https://doi.org/10.1089/fpd.2018.2496
  83. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution vol.47, pp.18, 2010, https://doi.org/10.1093/nar/gkz569
  84. Packing of semiflexible polymers into viral capsid in crowded environments vol.100, pp.5, 2010, https://doi.org/10.1103/physreve.100.052412
  85. Preparation and Characterization of Agar Based Magnetic Nanocomposite for Potential Biomedical Applications vol.25, pp.34, 2019, https://doi.org/10.2174/1381612825666191011113109
  86. Probiotics interaction with foodborne pathogens: a potential alternative to antibiotics and future challenges vol.59, pp.20, 2010, https://doi.org/10.1080/10408398.2018.1490885
  87. Preharvest Transmission Routes of Fresh Produce Associated Bacterial Pathogens with Outbreak Potentials: A Review vol.16, pp.22, 2019, https://doi.org/10.3390/ijerph16224407
  88. High prevalence of non-O157 Shiga toxin-producing Escherichia coli in beef cattle detected by combining four selective agars vol.19, pp.None, 2010, https://doi.org/10.1186/s12866-019-1582-8
  89. RstA, a two-component response regulator, plays important roles in multiple virulence-associated processes in enterohemorrhagic Escherichia coli O157:H7 vol.11, pp.None, 2010, https://doi.org/10.1186/s13099-019-0335-4
  90. Application of MALDI-TOF mass spectrometry and specific PCR for tracking of E. coli O157:H− strain 431/97 in Batavia lettuce vol.6, pp.None, 2019, https://doi.org/10.1186/s40538-018-0141-0
  91. Novel Biogenic Silver Nanoparticle-Induced Reactive Oxygen Species Inhibit the Biofilm Formation and Virulence Activities of Methicillin-Resistant Staphylococcus aureus (MRSA) Strain vol.8, pp.None, 2010, https://doi.org/10.3389/fbioe.2020.00433
  92. Aptamer-Based Biosensors for Environmental Monitoring vol.8, pp.None, 2010, https://doi.org/10.3389/fchem.2020.00434
  93. A Novel pH-Regulated, Unusual 603 bp Overlapping Protein Coding Gene pop Is Encoded Antisense to ompA in Escherichia coli O157:H7 (EHEC) vol.11, pp.None, 2020, https://doi.org/10.3389/fmicb.2020.00377
  94. Pathogenomes of Atypical Non-shigatoxigenic Escherichia coli NSF/SF O157:H7/NM: Comprehensive Phylogenomic Analysis Using Closed Genomes vol.11, pp.None, 2010, https://doi.org/10.3389/fmicb.2020.00619
  95. Production of functional mimics of human milk oligosaccharides by enzymatic glycosylation of bovine milk oligosaccharides vol.102, pp.None, 2010, https://doi.org/10.1016/j.idairyj.2019.104583
  96. Impact of Bacterial Toxins in the Lungs vol.12, pp.4, 2010, https://doi.org/10.3390/toxins12040223
  97. Bacteria in Soil Keep Your Hamburger “Healthy” vol.8, pp.None, 2010, https://doi.org/10.3389/frym.2020.545905
  98. Physiological and microvascular responses to hemoglobin concentration-targeted hemolytic anemia in rats vol.128, pp.6, 2020, https://doi.org/10.1152/japplphysiol.00767.2019
  99. Novel Biosynthesis of Copper Nanoparticles Using Zingiber and Allium sp. with Synergic Effect of Doxycycline for Anticancer and Bactericidal Activity vol.77, pp.9, 2020, https://doi.org/10.1007/s00284-020-02058-4
  100. A hidden risk: Survival and resuscitation of Escherichia coli O157:H7 in the viable but nonculturable state after boiling or microwaving vol.183, pp.None, 2010, https://doi.org/10.1016/j.watres.2020.116102
  101. Rapid and highly sensitive detection of Escherichia coli O157:H7 in food with loop‐mediated isothermal amplification coupled to a new bioluminescent assay vol.41, pp.20, 2020, https://doi.org/10.1002/elps.202000046
  102. Enhanced bactericidal activity of azithromycin‐coated silver nanoprisms in comparison to their spherical‐shaped counterparts vol.15, pp.12, 2010, https://doi.org/10.1049/mnl.2019.0704
  103. Fabrication of polycaprolactone nanofibrous membrane‐embedded microfluidic device for water filtration vol.137, pp.40, 2010, https://doi.org/10.1002/app.49207
  104. Association of Ct Values from Real-Time PCR with Culture in Microbiological Clearance Samples for Shiga Toxin-Producing Escherichia coli (STEC) vol.8, pp.11, 2010, https://doi.org/10.3390/microorganisms8111801
  105. Electroanalytical characteristic of a novel biosensor designed with graphene-polymer-based quaternary and mesoporous nanomaterials vol.43, pp.1, 2020, https://doi.org/10.1007/s12034-020-02090-x
  106. Inactivation of Shiga toxin‐producing Escherichia coli O157: H7 and mesophilic background microbiota of meat homogenate using elevated hydrostatic pressure, mild heat, and thymol vol.85, pp.12, 2010, https://doi.org/10.1111/1750-3841.15526
  107. Virulence-related O islands in enterohemorrhagic Escherichia coli O157:H7 vol.13, pp.1, 2021, https://doi.org/10.1080/19490976.2021.1992237
  108. Occurrence, Molecular Characteristics, and Antimicrobial Resistance of Escherichia coli O157 in Cattle, Beef, and Humans in Bishoftu Town, Central Ethiopia vol.18, pp.1, 2021, https://doi.org/10.1089/fpd.2020.2830
  109. Response of Escherichia coli minimal ter operon to UVC and auto-aggregation: pilot study vol.9, pp.None, 2010, https://doi.org/10.7717/peerj.11197
  110. Added Value of Genomic Surveillance of Virulence Factors in Shiga Toxin-Producing Escherichia coli in New South Wales, Australia vol.12, pp.None, 2010, https://doi.org/10.3389/fmicb.2021.713724
  111. The Fate of Foodborne Pathogens in Manure Treated Soil vol.12, pp.None, 2021, https://doi.org/10.3389/fmicb.2021.781357
  112. Biological applications study of bio‐nanocomposites based on chitosan/ TIO 2 nanoparticles polymeric films modified by oleic acid vol.109, pp.2, 2010, https://doi.org/10.1002/jbm.a.37019
  113. A label-free electrochemical biosensor based on screen-printed electrodes modified with gold nanoparticles for quick detection of bacterial pathogens vol.26, pp.None, 2010, https://doi.org/10.1016/j.mtcomm.2020.101726
  114. Modelling and Optimization of Processing Factors of Pumpkin Seeds Oil Extraction under Uniaxial Loading vol.9, pp.3, 2010, https://doi.org/10.3390/pr9030540
  115. Rapid Visualized Detection of Escherichia Coli O157:H7 by DNA Hydrogel Based on Rolling Circle Amplification vol.49, pp.3, 2010, https://doi.org/10.1016/s1872-2040(21)60085-3
  116. Application of sage herbal dust essential oils and supercritical fluid extract for the growth control of Escherichia coli in minced pork during storage vol.141, pp.None, 2010, https://doi.org/10.1016/j.lwt.2021.110935
  117. Lactoferrin as an antimicrobial against Salmonella enterica and Escherichia coli O157:H7 in raw milk vol.2, pp.3, 2010, https://doi.org/10.3168/jdsc.2020-0030
  118. Insights into Emergence of Antibiotic Resistance in Acid-Adapted Enterohaemorrhagic Escherichia coli vol.10, pp.5, 2021, https://doi.org/10.3390/antibiotics10050522
  119. Prevalence of E. coli O157:H7 strains in irrigation water and agricultural soil in two district municipalities in South Africa vol.78, pp.3, 2010, https://doi.org/10.1080/00207233.2020.1834318
  120. Gene interaction network to unravel the role of gut bacterial species in cardiovascular diseases: E. coli O157:H7 host-bacterial interaction study vol.133, pp.None, 2010, https://doi.org/10.1016/j.compbiomed.2021.104417
  121. Determination of the expiration time of Dangke ripening cheese through physico-chemical and microbiological analysis vol.788, pp.1, 2010, https://doi.org/10.1088/1755-1315/788/1/012094
  122. Genetic diversity and pathogenic potential of Shiga toxin-producing Escherichia coli (STEC) derived from German flour vol.347, pp.None, 2010, https://doi.org/10.1016/j.ijfoodmicro.2021.109197
  123. OmpR coordinates the expression of virulence factors of Enterohemorrhagic Escherichia coli in the alimentary tract of Caenorhabditis elegans vol.116, pp.1, 2010, https://doi.org/10.1111/mmi.14698
  124. Conductometric Immunosensor for Escherichia coli O157:H7 Detection Based on Polyaniline/Zinc Oxide (PANI/ZnO) Nanocomposite vol.13, pp.19, 2010, https://doi.org/10.3390/polym13193288
  125. Molecular Modeling the Proteins from the exo-xis Region of Lambda and Shigatoxigenic Bacteriophages vol.10, pp.11, 2010, https://doi.org/10.3390/antibiotics10111282
  126. Protective effect of Beta vulgaris roots supplementation on anemic phenylhydrazine-intoxicated rats vol.28, pp.46, 2010, https://doi.org/10.1007/s11356-021-15302-6
  127. Antimicrobial resistant bacteria in poultry excrement sold as manure in local markets in Benin vol.4, pp.4, 2021, https://doi.org/10.1007/s42398-021-00171-z
  128. Application of cold plasma and ozone technology for decontamination of Escherichia coli in foods- a review vol.130, pp.None, 2010, https://doi.org/10.1016/j.foodcont.2021.108338
  129. New combination of drugs to combat Escherichia coli DSM1103 QCDSM by reducing antibiotic ciprofloxacin standard dose using response surface methodology vol.14, pp.12, 2010, https://doi.org/10.1016/j.jiph.2021.10.029
  130. Host CDK-1 and formin mediate microvillar effacement induced by enterohemorrhagic Escherichia coli vol.12, pp.1, 2021, https://doi.org/10.1038/s41467-020-20355-1
  131. Genomic analysis of Shiga toxin-producing Escherichia coli O157:H7 from cattle and pork-production related environments vol.5, pp.1, 2010, https://doi.org/10.1038/s41538-021-00097-0
  132. Amynthas corticis genome reveals molecular mechanisms behind global distribution vol.4, pp.1, 2010, https://doi.org/10.1038/s42003-021-01659-4
  133. Prevalence and molecular characterization of multidrug‐resistant Escherichia coliO157 : H7 from dairy milk in the Peshawar region of Pakistan vol.41, pp.6, 2010, https://doi.org/10.1111/jfs.12941
  134. In Vitro Evaluation of Biological Activities and Phytochemical Analysis of Different Solvent Extracts of Punica granatum L. (Pomegranate) Peels vol.10, pp.12, 2010, https://doi.org/10.3390/plants10122742
  135. Characterization and genome analysis of a broad lytic spectrum bacteriophage P479 against multidrug-resistant Escherichia coli vol.308, pp.None, 2010, https://doi.org/10.1016/j.virusres.2021.198628