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COMMON FIXED POINT THEOREMS FOR
MULTIVALUED MAPS SATISFYING CONTACTIVE
CONDITIONS OF AN INTEGRAL TYPE

SEONG-HOON CHO* AND JONG-SOOK BAE

ABSTRACT. We prove the existence of common fixed points for multivalued maps
satisfying a contractive condition of an integral type. Our results are extentions
of results of Feng and Liu[Y. Feng, S. Liu, Fixed point theorems for multi-valued
contractive mappings and multi-valued Caristi type mappings, J. Math. Anal.
Appl. 317(2006), 103-112] and also, extentions of results of Daffer and Kaneko[P.
Z. Daffer, H. Kaneko, Fixed points of generalized contractive multi-valued map-
pings, J. Math. Anal. Appl. 192(1995), 655-666]. A main result in Feng and
LiulY. Feng, S. Liu, Fixed point theorems for multi-valued contractive mappings
and multi-valued Caristi type mappings, J. Math. Anal. Appl. 317(2006), 103-
112] is proved under necessary additional conditions.
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1. Introduction and preliminaries

Let (X,d) be a metric space. We denote by C'(X) the family of nonempty
closed subsets of X and by CB(X) the family of nonempty closed bounded
subsets of X. Let H(:,-) be the Hausdorff distance on C(X). That is, for
A, B e C(X),

H(A, B) = max {supaeAd(a, B), suppc pd(b, A)}

where d(a, B) = inf {d(a, b) : b e B} is the distance from the point a to the
subset B.

For k € (0,1), let ¥(k) be the family of Lebesgue measurable functions ¢ :
[0, 00) — [0, 00) such that

(p1) ¢ > 0 almost everywhere,
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b
(p2) / @(t)dt < oo for each b € (0, 00),
0

t’!L
(p3) for any sequence {t,} in (0, co), if {k_"/ gp(t)dt} is bounded then
0

(o0}
Zt” < 00.
0

~ We denote by ¥ the family of Lebesgue measurable functions ¢ : [0,00) —
[0, 00) satisfying (1), (¢2) and

oo tn o0
(tp4) for any sequence {t,} in (0, 00), if Z/ p(t)dt < oo then Z tn < 00.
n=0"0

= n=0
We know that ¥ C ¥(k) forall k € (0,1). For a multivalued map F : X — C(X),
be (0,1] and z € X, we denote

d(z,y) d(z,Fz)
GE(F)=dyeFz:b / o(t)dt < / o(t)dt
0 0

IP(F) = {y € Fz:bd(z,y) < d(z,Fm)}.

For a multivalued map F : X — C(X), let fr : X — R be a function defined
by fr(z) = d(z, Fz).

The Banach fixed point theorem which was first stated by Banach in 1922 is
an important tool in the theory of nonlinear analysis. The theorem guarantees
the existence and uniqueness of fixed points of certain self maps of metric spaces
and provides a constructive method to find those fixed points.

Also, the theorem has been used to show the existence of solutions of nonlinear
Volterra integral equations, nonlinear integro-differential equations in Banach
spaces and to show the convergence of algorithms in computational mathemat-
ics. Because of its importance for mathematical theory, many authors has been
studied the numerous generalizations of the Banach fixed point theorem for sin-
gle valued maps and also, extended in many different directions(1,2,3,5,9,11,12].
Nadler initially analyzied the existence of fixed points for multivalued contrac-
tion maps in metric spaces. He proved the following important theorem in [9].

and

Theorem 1.1. Let (X,d) be a complete metric space and T : X — BC(X) be
a multivalued map. If there exists q € [0,1) such that for any z,y € X

H(Tz,Ty) < qd(z,y),
then T' has a fized point in X.

In [8,10], the authors extended the Nadler’s theorem(Theorem 1.1). Recen-
tely, in [7], the authors gave an extention of the Nadler’s theorem in an anothor
direction than [8] and [10]. They proved the next two theorems.
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Theorem 1.2[7]. Let (X, d) be a complete metric space and T : X — C(X) be
a multivalued map. If there exists q € (0,1) such that for any x € X there exists
y € IF(T) satisfying

d(y, Ty) < qd(z,y),
then T' has a fized point in X provided that g < b and fr 1s lower semicontinu-
ous.

Theorem 1.3[7]. Let (X,d) be a complete metric space and let T : X — C(X)
be a multivalued map. Assume there exists g € (0,1) such that for any z € X
and y € Tz, there is z € Ty satisfying

d(y,z) d(zx,y)
/ H(t)dt < q / o(t)dt,
0 0

where ¢ : [0,00) — [0,00) is a Lebesque-integable mapping which is summable
€

on each compact subset of [0,00), and such that for each € > 0, / e(t)dt > 0.
0

Then T has a fized point in X provided fr is lower semicontinuous.

Throught this paper we denote

m(a.y) = max {d(s, ), d(z, To), d(y, Sy). 5{d(y, To) + d(a, Sy} }

for given two multivalued maps S, T : X — C(X), where X is a metric space.

In this paper, we give a contractive condition of an integral type for multival-
ued maps in metric spaces and prove a common fixed point theorem for these
maps. Our results are essentially generalizations of Theorem 1.1 and Theorem
1.2. We give an example which satisfies the contractive condition of integral
type(Theorem 2.1) but does not satisfy the contractive condition{Corollary 2.3).
And we give an example which satisfies the contractive condition of Corollary
2.3 but does not satisfy a general contractive condition:

(GC) there exists k € [0,1) such that for all z,y € X,

H(Tz, Sy) < km(z,y)

where S,T : X — CB(X).
Also, we give a counterexample for Theorem 1.3 and modify this theorem (
Theorem 2.10}.

2. Fixed point theorems for multivalued maps

In this section, we prove a common fixed point theorem for a pair of multi-
valued maps satisfying a contractive condition of integral type. Recall that a
function ¢ : X — R is lower semicontinuous if for any sequence {x,} in X and
r e X, g(z) <lim, . g(x,) whenever nlgr;@ Ty = T.
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Theorem 2.1. Let (X, d) be a nonempty complete metric space and T, S : X —
C(X) be multivalued maps. Let k € (0,1) and ¢ € (k). Let b and c be real

numbers with 0 < ¢ < b < 1 with g < k such that for any x € X there exists
y € ¢i(T) such that

d(y.Sy) m(z.y)
/ o)t < / o(t)dt @2.1.1)
0 0
and there exists z € py(S) such that
d(z,Tz) m(z,y)
/ p(t)dt < c/ o(t)dt. (2.1.2)
0 0

Then T and S have a common fized point in X provided that fr and fs are
lower semicontinuous.

Proof. Let xo € X be arbitrary fixed. From (2.1.1) and (2.1.2), there exists
z1 € ¢;°(T) such that

d(x1,5z1) m(xo,21)
/ p(t)dt <c / (t)dt (2.1.3)
0 0
and there exists z2 € ¢7*(S) such that
d(z2,Tx2) m(z2,%1)
/ p(t)dt < c/ @(t)dt. (2.1.4)
0 0

Then by (1) d(z1,Sz1) < m(zo, 1) if d(x1,Sz1) # 0, and d(z2,Tx2) <
m(x2, z1) if d(zq, Tz2) # 0. Hence we have

m(zo, 1)

1
= mazx {d(xo, z1), d(xo, Tzo), d(z1, Sz1), E{d(acl, Tzo) + d(zo, le)}}

< mazx {d(mo, z1), d(xo, 1), d(z1, ST1), %{d(xg, z1) + d(z1, Swl)}}
= d(.’ro,l‘l)
and

m(l‘g, 11)

= mazx {d(:cg, x1), d(z2, Txa), d(z1, Sx1), —21-{d(ac1, Tx3) + d{z2, Sml)}}

1
S max {d(xl, 122), d(xg, Tl‘z), d(xl, 172), §{d($1’ xg) + d(xg, TCEQ)}}

= d(z1,x2).
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From (2.1.3) and (2.1.4) we have

d(z1,51) d(zg,x1)
/ p(t)dt <c / p(t)dt
¢}

0
and

d(az2,Tx2) d{z1,z2)
/ ﬂﬂﬁﬁc/ o(t)dt.
0 0

On the other hand, since x2 € ;' (5), we have that

d(z1,z2) d(z1,5z1)
b/ p(t)dt < / (t)dt.
0 0

From (2.1.5) and (2.1.7), we have

d(zy,22) c d(zo,x1)
/ ¢mms—/ ().
0 b 0

Also, from (2.1.6) and (2.1.8), we have

d(xe,Tz2) 2 d(zo,%1)
/ (p(t)dt < — / gO(t)dt.
0 b 0

401

(2.1.5)

(2.1.6)

(2.1.7)

(2.1.8)

(2.1.9)

Repeat the above process, we have 3 € ¢7?(T) and x4 € ,*(S5) such that

d(w3,5$3) m(mz,il‘3)
/ maMSc/' p(t)dt
0

0

d{z4,Tx4) m(xs,r3)
/ (t)dt < c/ o(t)dt.
0 0

Then we also have

and

d(w3‘$4) c d(«'EanB)
/ p(t)dt < € / o(t)dt
0 b 0

and

d(xs.Txa) 2 d(z2,23)
/ p(t)dt < ”_/ w{t)dt.
[} b 0

Since x3 € p;*(T'), we have

d{z2,x3) d(zy Tx2)
b/ e(t)dt < / (t)dt.
0 0

From (2.1.9) and (2.1.12) we have

(2.1.10)

(2.1.11)

(2.1.12)
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d($2,1}3) ¢ d(zo,ml)
/ p(t)dt < (5)2/ p(t)dt (2.1.13)
0 0

Inductively, we can construct a sequence {z,} in X such that for all n =
0,1,2,---

Tont1 € OF2(T), Tant2 € 0 " (9),

d(Tant1,%2n42) c d(Z2n,T2n41)
/ p(t)dt < —/ e(t)dt,
0 b 0

d(Zan42,T2n43) ¢ d(z2n, Tx2n41)
/ p(ti < (57 [ Pl
0 0

Then we have for eachn=1,2,--,
d(mn,$n+1) c d(Io,I1) d(mo,ﬂn)
/ pwisGr [ womsk [T e
0 0 0

d(mn,$n+1) d(ZO,:El)
Then since ¢ k™" / w(t)dt p is bounded above by / p(t)dt,
0 0

and

we have
o0
Z d(Zn, Znt1) < 00 by (p3).
n=0
Therefore, {z,} is a Cauchy sequence, and let lim z, = x for some z €

X. Since fs(zont1) = d(Tont1,STont1) < d(Ton41, Tans2) and fr(ze,) =
d(zon, Tr2n) < d(zan, Tant1), nlglgo fs(zan41) = 0 and nILH;OfT(zzn+1) = 0.
Since fg and fr are lower semicontinuous, fs(z) = 0 and fr(z) = 0. Thus
z € Sz and xz € Tx.

Corollary 2.2. Let (X,d) be a complete metric space and T, S : X — C(X)
be multivalued maps and let k € (0,1) and ¢ € Y(k) satysfying there exists
c € (0, k) such that for any z,y € X

H(Tz,Sy) m(z,y)
/ o(t)dt < ¢ / o(t)dt.
0 0

Then T and S have a common fized point in X provided that fr and fs are
lower semicontinuous.

Proof. Let us take b € (¢, 1) with (_Ij < k. Then for any z € X, we know ¢f(T) #
0 and ¢} (S) # 0. Since for any y € ¥ (T) and z € ¢¥(S), d(y, Sy) < H(Tz, Sy)
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and d(z,Tz) < H(Sy,Tz), we have

d(y,Sy) m(z,y)
| ewdse [ par
0 0

and
d(z,Tz) m(z,y)
/ p(t)dt < c/ p(t)dt.
0 0

Therefore, from Theorem 2.1, T and S have a common fixed point in X.

If we take ¢(t) = 1 in Theorem 2.1 and Corollary 2.2, then we know ¢ € ¥(k)
for all £ € (0,1) and hence we have the next two corollaries.

Corollary 2.3. Let (X,d) be a complete metric space and T, S : X — C(X) be
multivalued maps satisfying there exist real numbers b and ¢ with0 <c <b< 1
such that for any x € X there exists y € IT(T) such that

d(y, Sy) < ¢ m(z,y)
and there exists z € I} (S) such that
d(z,Tz) < ¢ m(z,y).

Then T and S have a common fixed point in X provided fr and fs are lower
semicontinuous.

Corollary 2.4. Let (X,d) be a complete metric space and T,S : X — C(X) be
multivalued maps satysfying there exists ¢ € (0,1) such that for any z,y € X

H(Tz,Sy) < cm(zx,y).

Then T and S have a common fized point in X provided fr and fs are lower
semicontinuous.

Now we give an example which satisfies conditions in Theorem 2.1 but does
not satisfy conditions in Corollary 2.3.
1
Example 2.5. Let X = {— n=12,-- } U {0} with the Euclidean metric d.
n

Then (X, d) is a complete metric space.

Let o(t) = 1 <t i %) ’

n{n+ 1)(n + 2) 1 i< 1 n>1>'
2n+1 (n+1D(n+2) “nn+1) T
Then (1) and (p2) are satisfied.
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Let {t,} be a sequence in (0, c0) such that {(%) / @(t)dt} is bounded.
0

tn 1 n
Then there exists M > 0 such that / p(t)dt < (5) M for alln > 1. Take a
0

natural number N such that M < 2V, Then we have for n > N
tn 1\n—N
[etars (3)
o 2
1

[Tt have t,, <
) = [T ettt o wetavers < o

404

—_~
*
~—

) 1
Since (5
for each n > N. Thus we have pE \I!<§)

1
Letb=1,c= s and T,5 : X — C(X) be multivalued maps defined by

1 1 } (x:l,nzl’Q’...)’
n

Tx = {n-l—l’n—}—Q

{0} (z=0)
and
so- [ {iimrs) (=qn=r2)
(x =0).

{0}

If z = 0, then there exists y = 0 € T such that

d(y.Ty) d(z,y) m(z,y)
[ ewarse | e [T ptnar
0 0 0
and there exists z = 0 € S} such that

d(z,Sz) d(y,z) m(z,y)
/ p(t)dt < c / o(t)dt < ¢ / o(t)dt.
0 0 0
€ ¢F(T) such

1,2,---. Then there exists y =
n+1

At m4z)
/ p(t)dt
0

1
Suppose that z = —, n
n

that
d(y,Ty) 1. TH3t)
[ ewa= [ p(t)dt =
0 0

(5)"-2()"

1

d(% 1) d(z,y)
< c/ p(t)dt = c/ w(t)dt
0 0

€ ¢} (S) such that

and there exists z = ————
n+2
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d(Z.SZ d n+2 77+2) d(ﬁﬁ)
/ / o(t)dt = / o(t)dt
0 0 0
n+1 1/1\n
-(3) —56)
d(n+1 ~,n+2> d(Z,y)
< c/ p(t)dt = c/ o(t)dt.
0 0

Therefore, T and S satisfy conditions in Theorem 2.1 and 0 € 70N S0. But
T and S do not satisfy conditions in Corollary 2.3. In fact, suppose that 7" and

1
S satisfy conditions in Corollary 2.3. Then for z = —(n=1,2,---) there exists
n
1

" € I7(T') such that

y=

1 1 11
= [ < — = <
d(y, Ty) d<n+1,n+2> < kd <n,n+1> kd(z,y) < km{z,y)

1
and there exists z = —— € I¥(S) such that
n+2

d(z,Sz) =d<L,L> < kd
n+2 n+3

n+1
dk>
g N =TT

1 1
) = kd(y, 2) < km(z,
(7 g ) = dlwna) < bmieuy)

Thus we have k > i forn=1,2,---. Hence k > 1, which is
n

a contradiction.
Thus T and S do not satisfy conditions in Corollary 2.3. Therefore, Theorem
2.1 is a generalization of Corollary 2.3.

The next example shows that there exist two maps S, T which satisfy condi-
tions of Corollary 2.3 but not (GC).

Example 2.6. Let X = 2% in =0, 1,20--}U{0} and let S,T: X — CB(X)
be multivalued m?as defined by

1 1
W,l} (m—ﬁ,n 01,2,"'>,

{o%} (2 = 0).

Then we have
1
H|T— =
(T o SO)

St =Tz =

1
2

> Qin = max{d(z—lﬁ,o),d(%n,T%n),d(O, S0), %{d(%,go) 4 d(O,T%)}}
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forn=1,2,---. Thus T' and S do not satisfy (GC'). It is easy to see that

1
a1 = a5 :172535”' s
fse=fro=d@Te)=4 271 "~ 22"

0 (x=0,1).
Hence fr and fs are lower semicontinuous. Furthermore, for each x € X there

1
exists y € I§ ,(T') such that d(y, Ty) = Ed(x, y) and there exists z € I§ ;(S) such

1
that d(z, Sz) = Ed(y, z). Thus from Corollary 2.3, T' and S have a common fixed
point in X. Therefore, Corollary 2.3 is a generalization of theorem 3.3 of [6].

If we take S = T in Theorem 2.1(resp., Corollary 2.3, Corollary 2.4), then we
have the next Corollary 2.7(resp., Theorem 1.2, theorem 3.3[6])

Corollary 2.7. Let (X,d) be a complete metric space and T : X — C(X) be
multivalued maps. Let k € (0,1) and ¢ € ¥(k). Let b and ¢ be real numbers with

0<ec<b<l with % < k such that for any x € X there exists y € pf(T) such
that

d(y,Ty) maz{d(z,y),d(z,Tx),d(y,Ty), 3 {d(y,Tz)+d(z,Ty)}}
| ewdese |
0

p(t)dt.
0

Then T has a fixed point in X provided fr is lower semicontinuous.

Corollary 2.8. Let (X,d) be a complete metric space and T : X — C(X) be
multivalued map satisfying there exists ¢ € (0,b) such that for any x € X there
exists y € IF (T) such that

d(y, Ty) < ¢ max {d(x, y),d(z,Tx),d(y, Ty), %{d(y, Tz) + d(z,Ty)}} .

Then T has a fixred point in X provided fr is lower semicontinuous.

1 1
— = - =1727"' .
Note that if Sz = Tz = {n-i— 1} (av " ) in Exam-

{0} (z=0)
ple 2.5, then the conditions of Corollary 2.7 are satisfied but the conditions of
Corollary 2.8 are not satisfied.

Now, we give a counterexample for Theorem 1.3.

1 1 1
Example 2.9. Let X = {mn:mn=1+§+§+--'+—,n=1,2,---} with
n
271512

andc:i.LetT:X—>C(X)

the Euclidean metric d. Let ¢(s) = 7 5
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be multivalued map defined by Tz, = {x,+1}. Then T is continuous and fr is
lower semicontinuous.

For any z,, € X and x,41 € Tz, there is 2,.2 € Tx,1 such that

A(Znit1,Tnt2) n—_§_2 1 11 d(Ln,Trni1)
ds = ds = < - = ds.
/ plods = [ els)ds = i < 5= | #(9)

Hence T satisfies all conditions of Theorem 1.3. However T has no fixed points.
Note that ¢ does not satisfy (p3) for all k& € (0,1). Therefore, we modify
Theorem 1.3 as the next Theorem 2.10.

Let ¢ : [0,00) — [0,00) be a function satisfying
(¢1) ¢(0) = 0 and 0 < ¢(t) < t for all t > 0,

(62) Y ¢™(t) < oo for all t > 0.

Theorem 2.10. Let (X, d) be a complete metric space. If T : X — C(X) is a
multivalued map and ¢ € ¥ satisfying
forany x € X and y € Tz, there exists z € Ty such that

d(y,z) maz{d(z,y),d(z,Tz),d(y.Ty). 5 {d(y. Tz)+d(z,Ty)}}
| e / p(t)it )
0 g

(2.10.1)
then T has a fized point in X provided fr is lower semicontinuous.

Proof. Let z9 € X and z1 € Tzo. we have a sequence {x,} in X such that
Tpt1 €Tzp and forn=1,2,- .-

d(wn,fl'n+1)
/ olt)dt

maz{d(zn_1,21),d(@n-1,TTn_1),d(@n,TTn), 3 {d(zn,TTn_1)+d(@xn_1,Txn)}}
<o/ p(t)dt)

maz{d(zn_1.2n),d(Tn-1,21),d(Tn Tns1),3{d(zn,Tn)+d(Tn-1.Tns1)}}
/ p(t)dt

=
d(Tn—1,Tn)
< (/ go(t)dt) .

Thus we have

d(x’" xn+1> d(Z(),Il)
Z/ t)dt < Z¢ / o(t)dt) < oo,

n=0

<¢

<

S

maz{d(zn—1.2n),d(Zn-1,20n).d(Tn Tnt1), 1 {d(@n-1,2n)+d(@n,Tns1)}}
p(t)dt
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[ee)
which implies Z A(xn, Tpt1) < 0o.

n=0
Hence {z,} is Cauchy. By the completeness of X, there exists p € X such
that lim z, = p. Since fr is lower semicontinuous, we have
n—o0

0< fr(p) < lim fr(zn) < lim d(zn, Zn41) =0,

which implies fr(p) = d(p, Tp) = 0. Since Tp € C(X), p € Tp.

If we take ¢(t) = ¢t, ¢ € (0,1) in Theorem 2.10, then we have the next
theorem.

Theorem 2.11. Let (X, d) be a complete metric space. If T : X — C(X) is a
multivalued map and ¢ € U satisfying there exists ¢ € (0,1) such that for any
€ X and y € Tx, there exists z € Ty such that

d(y,2) maz{d(z,y).d(z.T2).d(y, Ty), 3 {d(y, T2)+d(z,Ty)}}
/ (t)dt < ¢ /
0

p(t)dt,
0

then T has a fized point in X provided fr is lower semicontinuous.

Example 2.12. Let (X, d) be the metric space as in Example 2.5 and ¢(t) = 1
for 0 <t < oo. Let ¢ : [0,00) — [0,00) be a function defined by

( 1 1
(k+1)(k+2) ( _k(k+1)>’
or=1° (2 =0)
6 (23)
linearly (otherwise)

and let T : X — C(X) be a multivalued map defined by

1 1
=-n=12-"--
e[ {m1) (= tmm120),
{0} (z =0).
Then ¢ € ¥, and fr is lower semicontinuous, and ¢ satisfies (¢1) and (42).

We now show that condition (2.10.1) of Theorem 2.10 is satisfied. If z = 0,
then for y = 0 € Tz, there exists z = 0 € Ty such that fod(y’z) p(t)dt <

d(z,y) 1 1
t . = — et N — T
] ( 0 o( )dt) Suppose that = n(n 1,2,---). Thenfory 1 €Tz,

1
there exists z = —— & Ty such that
n+2

d(y,=) DG 1
t)dt = t)ydt = —————
/0 o(t) / O e
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T d(z.y)
<ol = o[ e =o| [ e

Therefore, all conditions of Theorem 2.10 are satisfied and 0 € T0.
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