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ABSTRACT. In this paper we determine all elements in the root lattice of
symmetrizable generalized Kac-Moody algebras whose reflections preserve
the root systems. Also we discuss elements in the root lattices whose
reflection preserve the root lattices.
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1. Introduction

R. Bocherds (1988) initiated the study of generalized Kac-Moody algebras
(GKM algebras). The main difference between Kac-Moody algebras and GKM
algebras is that GKM algebras can have simple roots of non positive norm (called
imaginary roots). In [1], C. Bennet determined all imaginary roots whose reflec-
tion preserve the root systems for Kac-Moody algebras.

In [4], Zhao Kaiming determined all elements in the root lattices of sym-
metrizable Kac-Moody algebras whose reflection preserve the root systems and
those elements whose reflection preserve root latties.

In this article we consider symmetrizable generalized Kac-Moody algebras.
We enlarge the concept of reflection of root systems to the root lattices and find
elements in the root lattice whose reflection preserve the root system. Also we
determine all elements in the root lattices of symmetrizable generalized Kac-
Moody algebras whose reflections preserve the root systems.
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2. Preliminaries

In this section we recall below some preliminaries regarding generalized Kac-
Moody algebras and its root systems. The main difference between Kac-Moody
algebras and GKM algebras is that GKM algebras can have simple roots of non
positive norm (called imaginary roots).

Let I ={1,2,3,---,n} be a finite index set, and let A = (a;;); jer be a real
n X n matrix satisfying the following conditions:

(R1) Either a;; =2 or a;; <0foriel.

(R2) ai; < 0if 4 # j and a;; € Z if a;; = 2.

(R3) A5 = 0 aj; = 0.

We call such a matrix a generalized generalized Cartan matrix(abbreviated
as GGCM). A GGCM is called indecomposable if it cannot be reduced to a
block diagonal from by shuffling rows and columns. We consider the elements
of GGCM as elements of Z only. Let A = (a;;)!';—; be an indecomposable
GGCM. A GGCM is called symmetrizable if there exists a diagonal matrix
D = diag(e1,- - ,€n) with ¢; € R and ¢; > 0, Vi, such that DA is symmetric.

For any GGCM A = (aij)ijer, we have a triple (h,H,HV) where []
{aitier and [T' = {a\-’}' , satisfying the following:
i€

13

(R1) h is a finite dimensional (complex) vector space such that dim h =
2n — rank A.

R2) [] = {ai}‘ . C h* is linearly independent and [[" = {a;/} , € h is

i€ i€

linearly independent where i* = Homg(h, C).

(R3) < o, >= a;; where < -,- > denotes a duality pairing between % and
h*.

The above triple is called a realization of A.

Definition. Let GGCM A = (a;;); jer be symmerizable. The generalized Kac-
Moody algebra (abbreviated as GKM algebra) g(A) associated to a symmetriz-
able GGCM A = (as;); jer is the Lie algebra (over C) generated by the above
vector space h and the elements e, f;(i € I) satisfying the following relations:

1) [n, h'] =0 for b, € k.
)

F2 -h, ei] =< aih> e [h fil = - <ayh> f, e, fi] =007 fori,jel

(
l—aij

(F3 (ad ei) e; =0, (ad f;)1=% f; = 0 if a;; =2 and j # i
(

)
F4) iei,ej] =0, [fi,fj] =0if a;5,a;; <0 and a;; =0

The elements of [] (respectively Hv) are called the simple roots (respectively

simple coroots) of g.
We have the root space decomposition of g(A) with respect to the Cartan
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subalgebra A. g(A) = hd® Z BGgo D Z Dy, where A+< CQRt = ZZZOai)
aEAL aEA_ el

is the set of positive roots, A_(= —Ay) the set of negative roots, and g, is the

root space corresponding to a root o € A (= set of roots) and A = AL UA_.

We recall A = A, UA_ the root system of g(A), and @ = Q4+ U Q_ the root

lattice.

We put I™® = {z € Ilay; = 2}, m = {z € Ilay; < O} and []"° = {ai €

[Tl € Ire}, the set of real simple roots; [['" = {ai cllie Iim}, the set of
imaginary simple roots.
For ¢ € I, let r; be the simple reflection of A* given by

ri(\) = A — <)\,oziv>a¢()\ e 1Y)

The Weyl group W of g(A) is the subgroup of GL(R*) generated by the
ris(i € I"®). Note that (VV, {rii € Ire}) is a coxeter system.

For a real root a = w(ai)(w € W,a; € J[™® ) we also define the reflection
T of B* with respect to a by 7,(A) = A— < A\, @¥ > a(A € k*), where o =
w(a)) € his the dual real root of a. It can be proved ro = wriw™l e W.

Let A™¢ = W ] (the set of real roots), A = A\ A" (the set of imaginary

roots). For an element o = Zkiai € Q+\{0}, we define supp (a) to be the
i€l

subdiagram of the Dynkin diagram of A = (a;;); jer corresponding to the subset

{i €Il k;>1}of I. As in Kac-Moody algebra case the set of all imaginary root

in generalized Kac-Moody case is described as follows:

A =AMNAL = | ] w(K),
weWw

where
K = {a € Q\{0} < a,0) >< 0if a; = 2 and supp () is connected}

rm
\U j H In particular, the set AT of positive imaginary roots is W-stable
Jj=22

(Kac, 1990). Since we have been assuming that the GGCM A = (ay;)i jer is
symmetrizable, there exists a non-degenerate, symmetric, W-invariant bilinear
form (-,-) on g(A). Note that the restriction of this bilinear from (-,-) to the
Cartan subalgebra £ is also non-degenerate, so that it induces through the linear
isomorphism v : i — h* on A* a non-degenerate, symmetric, W-invariant bilinear
from which we again denoted by (-,-). In particular, we have (a;, ;) = d;a;;(1 <
i,j < n). We remark that a root o« € A is imaginary if and only if (o, ) < 0.

Since the reflections generating Weyl group are defined only with a;’s with
i € I"®, many properties on reflections and Weyl group for Kac-Moody algebras
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are generalized to generalized Kac-Moody algebras. We state some properties
on Weyl group and their proofs can be found in [2, 5, 8].

Lemma 2.1. [5] If A is a GGCM and o € A(A), then supp o is connected.

Proposition 2.2. [2] W preserves A, and in fact dim g, = dim gy forw € W
and a € A.

Proposition 2.3. [2] For all i € I"¢, the reflection r; permutes the elements of
Ap\{og}

Proposition 2.4. [2] For all o € A", dim g, =1 and in fact o € {W-ailai €
1 } Furthermore:

WATe = Are7 WAim = Am

ATe = _[lre7 A = _Aim

W(A” N A+> =A™NA,L

W(Aim n A+) =A™NA,

Given w € W define the length of w, denoted I(w), to be the smallest positive
integer k such that w can be written as the product of k of the reflections
3,4 € I"*. An expression w =7y, 7y, - - -1, %; € I such that a;; is real, is called
reduced if k = [(w). By convention I(1) = 0.

Proposition 2.5. [2] Let w e W, i € I"¢, and suppose that wo; = o; for some
j€J. Thenwrw™! =r;.

Proposition 2.6. [2] Let r; 1y, - --7i,, where iy € I", be a reduced expression
ofweW. Then
TiyTig = Ti;_,04; € A+.

Lemma 2.7. [8] For a € A and i € I", one has the following:

(a,ai) >0=>a—o; € A+,

(o,) < 0= a+a; € A,

at+o; ¢ A= (o) 20,

a—o; ¢ A= (a,a;) <0.

3. Reflections preserving root systems, preserving root lattices

In this section, we enlarge the notion of special imaginary root of Kac-Moody
algebras to Generalized Kac-Moody Algebras and show some properties related
to special imaginary roots of Kac-Moody can be generalized to GKM algebras.
In particular we examine the question of existence of special imaginary roots
and we find two large classes of Generalized Kac-Moody algebras having special
imaginary roots. Also we give the necessary and sufficient conditions for elements
in the root lattices of symmetrizable generalized Kac-Moody algebras so that
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their reflections preserve the root system in Proposition 3.2. In Proposition 3.3
we also prove the necessary and sufficient condition for imaginary root preserve
root lattices.

First, we recall the notion of reflection r was defined to simple roots a; €
[1=A{a1, a2, -, a,} for Kac-Moody algebras and we enlarge this notion to the
elements in root lattice @ = ZZO{@ for GKM algebras as follows:

For each a € 1", (a|a) # 0, we define the reflection r, of o as

2
ralA) =X (.o

o, for Aeh.

It is clear that for simple real root « reflection r4, preserves root system and root
lattice as well. Now we define special imaginary root for generalized Kac-Moody
algebra case as follows:

Definition. [4] An imaginary root « is called a special imaginary root if o
satisfies the following conditions:
(s1) (ala) #0
(82) rCE(A) = Aa
Ta(ATe) _ ATE’
Ta(Aim) = Aim
(83) 74 preserves root multiplicifies.

The following lemma will be used in the proof of Proposition 3.2.

Lemma 3.1. Suppose ry,r;, - -7;,71 is not reduced. Then there ewists 1 <k <s
such that 1,1y« Ty 11 = T4, Ty, - Tq, -+ T4, where the — means to delete the
corresponding element.

Proof. The proof can be found in [2].

n
We call o = Zklai € @ primitive if (ky, ke, -+ ,kn) = 1. It is clear that
i=1
there are finitely many primitive special imaginary roots in —C" for any gener-
alized Kac-Moody algebra g(A4).

The following theorem gives the necessary and sufficient condition for o € A™
to satisfy 7, € W. Since the Weyl group is generated only by real simple roots
there come no imaginary simple roots and the proof of Proposition 3.2 is similar
to the Kac-Moody algebra case which has no imaginary simple roots.

Proposition 3.2. Let @ € Q be primitive, and (a|a) # 0. Then ro € W if and
only if o € AT,

Proof. Since any real root o can be represented by w(a;) for some a; € []™° and
w € W one can prove the necessary condition easily by definition of reflection.
To prove the sufficient condition we use induction on the length I(r,) of r,. We
know that I(ry) is odd.
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If l{ro) = 1, we know that r, = r;,. So o = +a;, € A™. Suppose that
o € A™ if l{ry) < s. Now we consider the case that I(r,) = s and s > 3. Let
Te =Ty Tiy -+ Ti, be a reduced expression of r,. Because 1o, =731, i.e.,

To =TiTigTiy, =T Tig_y " Tiygs

Ti1Tig * **Ti,Ti; i not reduced. By Lemma 3.1, there exists 1 < k < s such that
T§Tip ** *Ti,Tiy = T3, T4y -+ Ti, -+ - T4, where the " means to delete the correspond-
ing element.

If k #1, we get rq = r4,7i, -+ 7;,_,7;,- By Proposition 2.5. and with simple
computation gives that Trii(a) = Tiy***Ti,_;, Which lies in W. Also. it is easy
to see that I(r,, (o)) < s —2. We use inductive hypothesis on I(r,, (a)) to get
that r;, (o) € A™. Hence o € A",

If k =1, we know that 7o = 7, 74, -+ Ty, = T4, T3, Tiy. SO TaTiy = T4 Tq,
ie., rr, (a) =ry. Hence r; (o) = +a. In case r;, (@) = —o, we get a = o, €
A", In case 73, (o) = a we consider 1, = r;, - - 7,7, instead. Similarly we get
a € A" or 1y, (a) = a. Continuing this method we can get that either a € A™®
or ri;(a) = aforall j =1,2,---,s. If @ € A™, the theorem is proved. If
ri;(a) = aforall j =1,2,---,s, we get —a = ro(a) = r;,74, - -7;,. This is

e

impossible, therefore we get the theorem. a

In Proposition 3.3 we discuss reflections preserving the root system for a GKM
algebras.

n
Proposition 3.3. Let a = Zkiai € Q\A primitive, and (a|a) # 0. Then

=1
oA = A if and only if o is W-equivalent to o; — o; where the permutation of @
and j in the Dynkin diagram D(A) is a diagram automorphism of D(A).

Proof. First, lets assume that o = oy — a2 where the permutation of 1 and 2 in
the Dynkin diagram D(A) is a diagram automorphism of D(A). So (o1]a) =
(a2|a2), i.e., a12 = a2;. And for any k # 1 or 2, we have a1 = asgk, a1 = ax2.
Then (a]a) = 2(an]on) — 2(ai]|az) = 2(a|es) and (a|a) = 2{a|az). Therefore
rolo) = ap ifk # 1,2, ro(0n) = ag, ro(a2) = a;. Hence 1, [] = [, Therefore,
ToA = A,

Conversely, lets suppose 7,A = A. Set Q° = Q\(Q-UQ_). T WanQ’ =0
we know that o € A, a contradiction. So Wan Q° # 0. By the action of W we
can assume that o € Q° and o = Zkiai—ijozj, where I, J C {1,2,---,n},

i€l Jj€J
INT=0,1+#0,J#0and IUJ = supp a.

If (ar]orp) # 0 for some p ¢ TU.J, we get ro(0p) = ap— (2(|ayp)/(]a))or. This
expression has both positive coefficients and negative coefficients, thus it can not
be in the root system, which contradicts to the hypothesis. Hence (a]ay) = 0 for
allp g TUJ. I |I| > 1, (a]oy) =0 forall i € I. If | J| > 1, we get (a]aj) = 0 for
allj € J. If |I| > 1, |J| > 1, we get (a|a) = 0, a contradiction. So we must have
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Il =1or |J]| =1 I |I| =1, |J| > 1, we assume that o = kja; — ijaj. So
JjeJ
(a|a) = k1(aat). Now we want to show that r, is the diagram automorphism
of D(A) interchanging 1 and 2 and fixing the other vertices.
By hypothesis 7,(a1) € A. On the other hand

raen) = o1 — (2(efer)/ () | ki =) kjay

jeJ
2
= —o1+ k—l Z kjoj
i#]

In this expression both negative and positive coefficients arise therefore r, ¢ A,
which contradicts to the hypothesis r,(c1) = A. So it is impossible that |I| = 1,
{J| > 1. Similarly, it is impossible that [I| > 1, |J| = 1. Hence |I| = |J| = 1.
We write o = k1) — koarp. Similarly we have

ra(a)) = aq — (2(a|a1)/(a|a)> <k1a1 _ kzag) cA

which implies 2k1 (o) /(@]a) = 1. This gives o (a1} = (2(a[a1)/(oa|a))k2a2 €
A and so 2ks(a|a1)/(a]a) = 1.
Therefore k1 = ko = 1. We get

Ckp, p # 172
T'a(Oép) = az, p=1,
a;, p=2.

Therefore r, is a diagram automorphism of D(A) interchanging 1 and 2 and
fixing the other vertices.

Corollary 3.4. Let a € Q be primitive, and (ala) # 0. Then roA = A 4f
and only if one of the following conditions holds: (a) o € A™ (b) « is a special
imaginary root (c)  is W-equivalent to oy — «; where the permutation of i and
J in the Dynkin diagram D(A) is a diagram automorphism of D(A).

Proof. The proof is immediate from Proposition 3.2.and Proposition 3.3.

We discuss elements in the root lattices of symmetrizable GKM algebras,
whose reflections preserve the root lattice. It is not as easy to determine all re-
flections preserving the root lattices as it is to determine all reflections preserving
the root systems.

We prove necessary and sufficient condition for imaginary root to preserve
root lattices.

Proposition 3.5. Let o = Z kia; € Q\{0} primitive, and (o, ) # 0. Then
i=1

ra(@) = Q if and only if 2(a;, @)/ (o, @) € Z for all i = 1,2,--- ,n.
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Proof. By investigating 7, () € @ for all i = 1,2,---,n, we can easily get the
theorem.

Proposition 3.6. Let a = Zkiai € Q+\{0} be primitive satisfing that
i=1
all i's with k; > 0 are in I"°, (o,a) # 0, a € W - CV where CV = {ﬂ €

Q\OH(B,:) 2 0,¥i € ™} Then ra(Q) = Q i and only if ra(Bsuppia)) =
Aupp(a) and 2(as, o)/ (o, o) € Z for all i ¢ supp(c).

Proof. The necessary condition follows from Proposition 3.5.
Next we want to prove sufficient condition. By the action of W we may assume
that a € W - CV.

Denote supp a by J, the submatrix of A corresponding to J by A; and the
subdiagram of D by Dj. Set (a;, @) = z;. By hypothesis we know z; > 0 for
i € J"¢. From hypothesis and Proposition 3.5 we have 2z;/ Z k;x; € Z, for all

ied
j=1,2,--- n, which implies at most two z;(i € J) are not zero.

If only one z;(i € J) is not zero, we may assume z; > 0. Since 2z;/ Z kiz; €

icJ
n €
Z either k1 =1 or k; = 2. In case k1 = 1 we have @ = a1 + Zkiai. Then
. i=2
ro(a1) = —ag — ZZkiai, roai) = —a; for i € J\{1}. Because (2¢, a1) > 0,
=2 n
we know 2o — a1 € A, But 2o — a1 = o3 + EZkiai = ra(—ai). So rolai)
=2
is a real root. Therefore {r,(a;)|¢ € J} is also a root basis of g(A;). Hence
To(Ay) = Ay. In case k3 = 2 we can prove using the same argument.

If two of z;(i € J) are not zero, we may assume z; > 0, z2 > 0. So similar
to the case above we have k1 = ko = 1. Further ro(a;) = a; for i € J\{1,2},

roloy) = —ay — 22]6 ai, rolag) = —ag — ZQkiai. Because (2a,a1) > 0, we
=2 =2
n

know 200 — oy € A. But 2 — a1 = o1 + ZQkiai. So ro(a1) is a real root.
=2

Similarly r(c2) is a real root. Therefore {rq(c;)|i € J} is also a root basis of

g{Ay). Hence ro(Ay) = Ay

REFERENCES

1. C. Bennet, Imaginary roots of a Kac-Moody Lie algebra whose reflection preserve root
multiplicities,J. Algebra 158(1993), 244-267.



Reflection of root lattices for generalized Kac-Moody algebras 381

- Elizabeth Jurisich, An Ezpression of Generalized Kac-Moody algebras.Contemporary Math-
memathics Volume 194(1996).

. V. G. Kagc, Infinite Dimensional Lie Algebra, 3rd ed., Cambridge, UK(1989).

. Zhao Kaiming, Reflection of Root Lattices for Kac-Moody Algebras,(1994).

. N. Sthanumoorthy and A. Uma Maheswari, Purely Imaginary Roots of Kac-Moody Alge-
bras, Communication in Algebra, 24(2)(1996), 677-693.

. N. Sthanumoorthy and P. L. Lilly, Special Imaginary Roots of Generalized Kac-Moody
Algebras, Communication in Algebra 30(2002), 4771-4787.

. N. Sthanumoorthy and P. L. Lilly, A Note on Purely Imaginary Roots of Generalized Kac-
Moody Algebras, Univ. of Madras, Chennai, India. Vol. 31(2003), 5467-5479.

. N. Sthanumoorthy and P. L. Lilly, Complete Classifications of Generalized Kac-Moody Alge-
bras Possessing Spectal Imaginary Roots and Strictly Imaginary Property, Communication
in Algebra, 35(2007), 2450-2471.

. Z, Wan, Introduction to Kac-Moody Algebra, World Scientific Publishing Co. Pte.
Ltd.(1991).

Wansoon Kim is a professor in the Department of Mathematics at Hoseo University,
Chungnam, South Korea. She received her Ph.D in mathematics from Indiana University,
Bloomington, U.S.. Her major area of research interests are representations of Kac-Moody
Algebras and Combinatorics.

Department of Mathematics, Hoseo University Asan 336-851, Korea
e-mail: kimws@hoseo.edu

Junseok Park is a professor in the Department of Mathematics at Hoseo University,
Chungnam, South Korea. He received his Ph.D in mathematics from Chungnam National

University. His research interests focus on structure theory of Hopf algebras and Quantum
groups.

Department of Mathematics, Hoseo University Asan 336-851, Korea
e-mail: junspk@hoseo.edu



