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1. Introduction

Many authors from time to time have introduced a different number of gen-
eralization of Zadeh’s fuzzy set theory [32] and have been applied to many
branches in mathematics. The notion of vague theory first introduced by Gau
and Buehrer [23]. Later vague theory of the “group” concept into “vague group”
was made by Biswas [2]. This work was the first vagueness of any algebraic struc-
ture and thus opened a new direction, new exploration, new path of thinking
to mathematicians, engineers, computer scientists and many others in various
tests.

The study of n-ary systems was initiated by Kasner [26] in 1904,but the
important study on n-ary groups was done by Dornte [4].The theory of n-ary
systems have many applications.For example,in the theory of automata [24] n-
ary semigroup and n-ary groups are used.The n-ary groupoids are applied in
the theory of quantum groups [29].Also the ternary structures in physics are
described by Kerner in [25]. The first fuzzification of n-ary system was introduced
by Dudek [11].Further,the concept of fuzzy n-ary subgroupswas introduced by
Davvaz and Dudek [3].The first vagueness of n-ary system was introduced by
Prince Williams and Said Al-Jelihaw [30]. The aim of this paper is to introduce
the notion of T—vague n-ary subgroups in n-ary group (G, f) and investigate
their related properties.

2. Preliminaries
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176 D.R Prince Williams and Said Al-Jelihaw

A non-empty set G together with one n-ary operation f : G® — G,where
n > 2, is called an n-ary groupoid and is denoted by (G, f).Accroding to the
general convention used in the theory of n-ary groupoids the sequence of elements
Ti, Tit1, .-, T is denoted by «7.In the case j < i ,it denoted the empty symbol.If

. ; ., (@) .
Titl = Tiy2 = ... = Tipy = 7, then instead of ! and we write « . In this
convention
f(l'], ,J)n) = f(l'?)
and

; ()
f@1, o @i @y &, i1, ey Tn) = fl, T, T 1)

¢
An n-ary groupoid (G, f) is called an (4, j)-associative if
- - _ i—1 i—1 _
T F@rt ), 227) = £ (o7 £, 2205
hold for all z1, ..., £2,—1 € G.If this identity holds for all 1 < i < j < n,then we
say that the operation f is associative and (G, f) is called an n-ary semigroup.It
is clear that an n-ary groupoid is associative if and only if it is (1, j)-associative

for all j = 2,..,n.In the binary case (i.e. n=2)it is usual semigroup.If for all
Zo, T1, .., Tn € G and fixed ¢ € {1, ..., n} there exists an element z € G such that

f (Z’i_la Z, .’IJ?+1) = X0 (1)

then we say that this equation is i-solvable or solvable at the place i.If the solution
is unique,then we say that (1) is uniquely i-solvable.An n-ary groupoid (G, f)
uniquely solvable for all i = 1, ..., n is called an n-ary quasigroup .An associative
n-ary quasigroup is called an n-ary group .
Fixing an an n-ary operation f,where n > 3, the elements ag_Q we obtain the
new binary operation zoy = f(z,ab ™2, y).If (G, f) is an n-ary group then (G, o)
is a group.Choosing different elements a§“2 we obtain different groups.All these
groups are isomorphic[8].So,we can consider only group of the form

reto(G, f) = (G, o), where zoy = f(z,""a",y).

-3
In this group e =a@,27! = f(a, (na ),E, a).

In the theory of n-ary groups,the following Theorem plays an important role.

Theorem 2.1.[14] For any n-ary group (G, f) there exist a group (G,0),its au-
tomorphism ¢ and an element b € G such that

f@l) =z10p(x2) 0 ¢*(25) 0. 04" () 0 b (2)
holds for all 7 € G.

To study more about n-ary system see [5-11,13,15-22].

In what follows,G is a non-empty set and (G, f) is a n-ary group unless
otherwise specified.In what follows, G is a non-empty set and (G, f) is a n-ary
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group unless otherwise specified.

Definition 2.2.[1] By a t-norm ,a function T : [0,1] x [0,1] — [0, 1]satisfying
the following conditions is meant:

(T1) T(x,1) = x;

(T2) T(z,y) < T(z, 2) if

(T3) T(x,y) = T(y, x);

(T )(xTw,D=TUY Y), 2);
for all z,y,z € [0, 1].

7
Now we generalize the domain of T to [] [0, 1] as follows:
i=1
i
Definition 2.3. The function T,, = [] [0,1] — [0, 1] is defined by:

i=1

To(al) =Tolar, a2, .y an) = To(au, Tno1(Q1, vy i1, Qi 1, oy ) (3)
for all of € [0,1] and 1 < ¢ < n where n < 2T, =T, and T} = id(identity).
For a t-norm T}, on ﬁ [0, 1],it is denoted by

i=1
Oy ={a€[0,1]| Thla, a, ...,a) = a}.
It is clear that every t-norm has the following property:
T (o) < min{ay, ag, ..., an}

for all of € [0, 1].

Remark 2.4. If T}, is of the form (3),then we say T, is a function induced by
t-norm T

Definition 2.5.{2,27] A vague set A in the universe of discourse U is charac-
terized by two membership functions given by:

(V1) A true membership function t4 : U — [0, 1],and

(V2) A false membership function f4 : U — [0, 1],
where t 4(u) is a lower bound on the grade of membership of u derived from the
“evidence for u”, f4(u) is a lower bound on the negation of u derived from the
“evidence against u”,and ta(u) + fa(u) < 1.

Thus the grade of membership of u in the vague set A is bounded by a
subinterval [t4(u),1 — fa(u)] of [0, 1].This indicates that if the actual grade of
membership v is p(u),then £4(u) < p(u) <1 - fa(u).

The vague set A is written as

A= {{u, [ta(w), fa(u)])|u € U},
where the interval [t a(u), 1 — f4(u)] is called the vague value of u in A, denoted
by VA(U)

Definition 2.6. [30] Let (G, f) be a n-ary group.A vague set A of G is called a
vague n-ary subgroup of (G, f)if the following axioms holds:
(VuS1)(Val € G), (Va(f(z}) = imin{Va(x1), ..., Va(za)}),
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(VnS2)(Vz € G), (Va(T) = Va(x)). that is,

ta(f(27)) = min{ta(z1),...,talzn)})
1—fA(f($1)) > min{l — fa(z1), ..., fa(zn)}
ta(@) > ta(z)
1-fa@) = 1- fa(z)).

Example 2.7.[30] Let (Z4,f) be a 4-ary subgroup derived from additive group
Z4.Let A be the vague set in Z, defined as follows:

A = {{0,[0.8,0.02], (1,[0.8,0.02], (2, [0.8,0.02], (3,[0.2,0.07]}.

By routine calculations, it is clear that A is a vague 4-ary subgroup of (Zg, f).

2. T-Vague n-ary subgroups

In this section, we define the notion of T'—vague n-ary subgroups.For our
discussion, we shall use the following notations on interval arithmetic:

Let I10,1] denote the family of all closed subintervals of [0, 1].We define the
term “tmaz” to mean the maximum of n intervals as:

tmax (I, I, ..., I) := Tp[maz(as, b1), maz(ag, ba), ..., maz(an, bn)),

where I = [a1,b1], Iz = [a2,b2], ..., I, = [an, by]. Similarly, we define “tmin” . The
concept of “tmaz” and “tmin” could be extended to define “tsup” and “tinf”
of infinite number of elements of [0, 1].

It is obvious that L = {I[0, 1], tsup, tinf, =} is a lattice with universal bounds
[0,0] and [1,1].

Definition 3.1.Let (G, f)be a n-ary group.A vague set A of G is called a
T—vague n-ary subgroup of (G, f)if the following axioms holds:

(TVnS1)(Vz} € G), (Va(f(z}) = tmin{Va(z1), ..., Va(zn)}),

(TVnS2)(Vz € G), (Va(T) = Va(z)). that is,

ta(f(@})) = Tu{ta(z1), .., ta(za)})
1—fA(f(w1)) > Tn{l—fA(xl),..-,fA(xn)}
ta(@ > ta(x)
1= fa@) = 1- fa(x)).

Example 3.2. Let (Z4, f) be a 4-ary subgroup derived from additive group
Z4.Let A be the vague set in Z, defined as follows:

A= {(0,]0.8,0.02], (1, [0.8,0.02], (2, 0.8,0.02], (3, [0.2,0.07)}
and we define f(z}) =z, + 22 + 23 + 4.

4
Let Tor, : J] [0,1] — [0, 1] be a function defined by as follows:
i=1

Tm(yt) = maz {y1 +y2 + y3 + ya — 1,0}
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for all yi € [0, 1].Then,T}, is a function induced by t-norm.By routine calcula-
tions, it is clear that A is a T'—vague 4-ary subgroup of (Zg4, f).

Theorem 3.3. If {A;|i € I} is an arbitrary family of T—vague n-ary subgroup
of (G, f)then NA; is a T—vague n-ary subgroup of (G, f),where [ Ai(z) =
sup{A;(z)|i € I)}, for allz € G.

Proof.The proof is trivial.

Recall that if I; = [a1,b1] and I» = [ag,bo] are two subintervals of [0, 1],we
can define a relation between I and Iy by I, = I, if and only if a; > ay and
b1 > by.For o, 8 € [0, 1].Now we define (o, 8) — cut and a — cut of a vague set.

Definition 3.4. Let A be a vague set in G with true membership function ¢4
and the false membership function f4.The (o, 3) — cut of the vague set A is a
crisp subset A, gy of the set G given by

Atap) = {2 € G|Val2) = [o, A]}-

Clearly,A(y,0) = G.The («, 8)—cuts of the vague set A are also called vague set
of A.

Definition 3.5. Let & — cut be a vague set A is a crisp subset A, of the set G
given by A, = A(q,q)-

Note that Agp = G, and if & > B then A, C Ag and A(q o) = As-Equivalently,
we can define the a—cut as

Ay ={z € Glta(z) > a}.

The following Theorem is a consequence of the Transfer Principle described
in [28].
Theorem 3.6. Let A be a vague set of G. Then A, ) is a crisp subset of
G, is a (o, B) — cut is a T—vague n-ary subgroup of (G, f) if and only if the
(a, B) —cut of G is n-ary subgroup of (G, f) for every o, 8 € [0,1],which is called
T — vague — cut subgroup of (G, f).
Proof. Let A be a vague set of G.Suppose the crisp subset A, g of G, is
a (a,B) — cut is a T—vague n-ary subgroup of (G, f). If z7 € A, gand
a,B€[0,1], then t4(x;) > o and 1 — fa(x;) > Bfor alli = 1,2,...,n. Thus

ta(f(2T) = Toftal(zr), ..., talzn)} > a,
and
1= falf(@]) =2 Tof{l — fa(z1), .., 1 - falza)} = 6.

which implies f(z7) € Arq 3.

For all x € Ay, ), then t4(x) > @ and 1 — fa(z) > B we have t4(T) >
ta(z) > «, and

1= fa@Z 21— fa(z) > 5.
which implies Z € A, gy. Thus A, ) is a n-ary subgroup of (G, f).
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Conversely, assume that A g) is a n-ary subgroup of (G, f).Let us define
oo = Tp{ta(x1),....,ta(zn)} and

ﬂo = Tn{l — fA(xl), veey 1-— fA(SCn)},

for some 27 € G.Then obviously z7 € A(,g) , consequently f(z7) € A(ap)-
Thus

ta(f(z])) = ag = Tp{ta(z1), ..., talzn)}
and

1- fA(f(x?)) 2 ﬁO = Tn{l - fA(xl)s ey 1= fA(-’I;n)}
Now, let € Aq,p). Then ta(z) = a9 > a. and 1 — fa(z) = Bo = B. Thus
T € A(a,p)- Since , by the assumption ,Z € A(s,), ta(z) = ap =2 o and 1 -
fa(z) = Bo > B. Whence tA(T) > ag = ta(z) and 1 — fa(Z) > ap =1 — fa(z).
This complete the proof.

Using the above theorem,we can prove the following characterization of T -
vague n-ary subgroups.

Theorem 3.7. A vague set A in G, is a T—vague n-ary subgroups of (G, f)
if and only if the (o, B)-cut subset A(q.gy of G is a n-ary subgroup of (G, f) for
alli=1,2,...,n and all 7 € G, A satisfies the following conditions:

() Va(f(z}) = tmin{Va(z1), ..., Valzs)},

(@) Va(z:) = tmin{Va(x1), ..., Va(@i—1), Va(f(@1)), Va(zi=1), .., Val(zn)}-

Proof. Assume that A is a vague n-ary subgroupsof (G, f) .Similarly as in the
proof of Theorem 3.6, we can prove that each non-empty («, 3)-cut subset A, g)
is closed under the operation f,that is 2} € A(o g) implies f(z7) € A(a,p)-
Now let xo,x’fl,wﬁrl,where xo = f(x’i‘l,z,xznﬂ) for some 7 = 1,2,...,n and
z € G which implies zg € A(q,g) -Then,according to (i1),we have t4 (z;) > a and
1— fa(z;) > B.So,the the equation (1) has a solution z € Ay, g) -This mean that
(a, B)-cut subset A, g) is a n-ary subgroups.

Conversely, assume that (e, 8)-cut subset A, gy is a n-ary subgroups of
(G, f) .Then it is easy to prove the condition (i).
For zT € G, we define

ap =To{ta(@1), ., talzio1), ta(f(@])), ta(®iz1), ..., talzn)}.

and
/30 = Tn{l _fA(ml)a B | _fA(xi—l)a l_fA(f(x?)% 1 _fA(Ii—l)v s 1 _fA(xn)}

Then a:"l—l,xzﬁrl, f(z?) € A(ag,8,)-Whence, according to the definition of n-
ary group,we conclude z; € A(q,,3,)-Thus ta(z;) > oo and 1 - fa (x;) > Bo.This
proves the condition (4t).

Definition 3.8. Let (G, f) and (G, f) be a n-ary groups. A mapping g : G —
@ is called a n-ary homomorphism if g(f(z7)) = f(¢g"(«})), where g"(27) =
(g(z1), ..., g(zy)) for all 2T € G.
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For any vague set A in G’, we define the preimage of A under g,denoted by
g }(A), is a vague set in G defined by g Hta) = ta,, (x) =ta(g(z)) and

g (fa)=1—fa_,(x)=1- falg(z)),Vz € G.
For any vague set A in G, we define the image of A under g, denoted by
g(A),is a vague set in G’ defined by

{ sup  talx), if g7 (y) # o,
g(ta)(y) = =€97')

0, otherwise.

and

inf falz), if 97 (y) # ¢,
9(fa)(y) = ¢ =€9'w)

0, otherwise.
forallz € G and y € G'.
Theorem 3.9. Let g be a n-ary homomorphism mapping from G into G' with

9(z) = g(z) for all z € G and A is a T—vague n-ary subgroup of (G', f). Then
9 (A) is a T—vague n-ary subgroup of (G, f).

Proof. Let 27 € G,we have

ta, . (f(z1)) talg(f(z1)) = ta(f(g" (1))
> Tn{ta(g(z1)), ... talg(zn))}

Tt (@1), st (on))

\%

It

and
L= fa, o (F@R) = 1— falg(f(e])) = uwwm»
zTu—munx Falg(za))}
= To{1-fa,_, (z1), . fA (@)}
Also, for all z € G ta _, (T) = ta(9(T)) > tA( (z)) =ta _,(z)and

1=fa, (@ = 1-fal9@) 21~ falg(x ))—1—fA L (@)
This completes the proof.

If we strengthen the condition of g, then we can construct the converse of
Theorem 3.9 as follows.

Theorem 38.10. Let g be a n-ary homomorphism from G into G’ and g~'(A)
is a T—vague n-ary subgroup of (G, f).Then A is a T—vague n-ary subgroup
of (G', f).

Proof. For any zi,...,x,, € G’ there exists ay,...,a, € G such that g(a;) =
1, ..., 9(an) = z,. For any f(z}) € (G', ), there exists f(a}) € (G, f) such
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that g(f(a7)) = f(z7). Then
ta(f(7)) ta(g(f(al)) =ta _,(f(a]))
Tﬂ{tAg—l (al)v tAg—1 (a2)7 ) tAg—1(a’n)}

Tn{ta(g(ar), ... ta(g(an)}
T {ta(@1), s talzn)}.

v o

and

1— fa(f(e7)) 1 falg(f(a1))) =1 - fa _,(f(a1))
Tofl - fa,_,(a1),1 = fa _,(a2), -, 1= fa _,(an)}
To{1 - fa(g(ar), ..., 1 - fa(g(an)}
= T {l— fa(zi),....,1 =~ fa(zn)}.
For any Z € G’, there exists @ € G such that g(a) = Z, we have
ta(@) = ta(g(@)=ta,_, (@ 2ta _ (a) =tala) =ta(z).

and 1 — fa(Z) = 1 - fa(9(@) =1—fa,_,(@ 21— fa,_,(a) =1-fala) =
1 — fa(z). This completes the proof.

v

Theorem 3.11. Let g be a mapping from G into G'. If A is a T—vague n-ary
subgroup of (G, f),then g(A) is a T—vague n-ary subgroup of (G', f).
Proof. Let g be a mapping from G into G’ and let z} € G, y? € G’'.Noticing
that {z;(i = 1,2,...,n)|z; € ¢ Y (f(¥}))} C {f(z}) € Glz: € g7 (y),22 €
g (y2)y s Tn € g7 (yn))}. we have
9(ta)(f(y1)
= sup{ta(e?)|e; € g~ (f(y1))}
> sup{ta(f(zP)|z1 € g7 (1), 2 € g7 (¥2), -, Tn € g7 (yn))}
> sup{Tp{ta(z1), ta(xa),....ta(z)}Hz1 € g7 ), 22 € g7 (¥2), s
Tn € g_l(yn))}
= Ta{sup{ta(zi)lz1 € g7 (1)}, sup{ta(z2)|z1 € g7 (y2)}, s
sup{ta(zn)lzi € 97" (yn)}}
> To{g(ta)(y1), 9(ta)(y2), -, 9(ta)(yn) }-

and

1—g(fa)(f(u})
= sup{1l = fa(a?)|z: € g7 (F(¥1))}
> sup{l — fa(f(@])|z1 € g7 (1), 22 € g7 (y2), s Tn € 97 (yn))}
> sup{T{1 - fa(z1),1— fa(z2), ..., 1= falzn)}a1 € g7 (1),
22 € 97 (¥2), -, Tn € g7 (yn))}
= Tn{sup{l — fa(z1)lz1 € g7 (y1)}, sup{l — fa(z2)lz1 € g (12)}, .-,
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sup{1 = fa(an)lz1 € g7 (yn)}}
2 Tu{1 = g(fa)(y1), 1 = g(fa)(w2), -y 1 = 9(Fa)(um) }-

For all z € GG, we have

9(ta)@) = sup{ta(@|T € g~ (@)}
> sup{ta(z)lz € g~ (f(¥))}
= g(ta)(z)
and
1—g(f))@) = sup{l-fa(@T€g  (f@)}
> sup{l - fa(z)lz € g " (f(y)}

This completes the proof.

Corollary 3.12. A vague set A defined on group (G, .) is a T—vague subgroup
if and only if

(1) Valey) = tmin{Va(z), Va(n)}

(2) Va(a) = tmin{Va(y), Va(o)},

(3) Valy) = tmin{Va(z), Va(ey)}
holds for all z,y € G.

Theorem 3.13. Let A be a T—wvague n-ary subgroup of (G, f) .If there exists
an element a € G such that Va(a) = Va(z) for every x € G, then A is a
T—vague n-ary subgroup of a group ret (G, f).

Proof. For all z,y,a € G we have

(n—2)

tA(f(xv a 73/)
Tn{ta(z), tala), taly)}
To{talz), taly)}

and (n—2)
1= fa(zoy) 1— fa(flz, a Ly

ta(zoy)

([ AV

> Tp{l - fa(x),1— fala), 1 = faly)}
= Tp{l— falz), 1 - faly)}.
For all z,a € G, we have
tae™) = ta(f@ "2 7))
> Tn{tA(JJ),tA(f),tA(a),tA(a)}
= ta(z)

and
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2 T {1- fa(®),1 - fa(@),1 - fala),1 - fa(@)}

= 1— fa(x).
which complete the proof.

In Theorem 3.13, the assumption that V4(a) = Va(z) cannot be omitted.
Examples 3.14. Let (Z4, f) be a ternary group from Example 3.2.
Define a vague set A as follows:
A = {(0,[0.8,0.02], (1, [0.3,0.05], (2, [0.3,0.05], (3, [0.3,0.05]}.

Clearly A is a vague ternary subgroup of (Z4, f).For ret;(Z4, f), we have
ta(000) =ta((£(0,1,0)) = t4(1) = 0.3#0.8 = t4(0) = T, {ta(0), t4(0)}.
Hence the assumption V4(a) > Va(z) cannot be omitted.

Theorem 3.15. Let (G, f) be an-ary group. If A is a T—vague n-ary subgroup
of a group reto (G, f) and Va(a) = Va(z) for all a,z € G,then A is a T—vague
n-ary subgroup of (G, f).

Proof. According to Theorem 2.1, any n-ary group can be represented of the form

(2) ,where (G, 0) = reto(G, f), p(z) = f(a,z, (%—2)) and b = f(a@, ...,a).Then we
have

talp(@) = ta(f@z, 7))
> Tn{ta(@), ta(z), ta(a)}
= tA(iII).

and ) B (n—2)

tale™ (@) = talf(@ o(z), z )
> Tu{ta(@),ta(p()),ta(a)}
= ta(p(z))
> tA(x).

Consequently, t4(o*(x)) > ta(z) for all z € G and k € N.
Similarly, we have

1= fale@) = 1-fa(f@a,"7")
2 To{l- fa(@),1~ fa(z),1~ fa(a)}

1— fa(z).
and (n—2)

1— fa(¥*(2)) 1 - fa(f@ o(x), 7))
To{l - fa(@), 1 - falp()),1 - fa(a)}
1= falp(x))
> 1— fa(z).
Consequently,1 — fa(¢*(z)) > 1~ fa(z) forallz € Gand k € N. For all z € G,

]

it

v

\%
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,a)) > tA(_) > tA( ) and

1—falb) = 1-fa(f@ ....,a@) 21— fa@ > 1~ fa(z).

Thus

ta(f(21)) = ta(ziop(zz)op®(zs)o...0o0" (z,)0b)
2 Tp{ta(zy), tap(zs), ta(p®(@3)), ., tale” (2n)), ta(b)}
> To{ta(z1),ta(@e), ta(zs), ..., talzy), ta(d)}
> To{ta(z1),ta(za), tazs), ..., ta(zn)}.

and
1= fa(f(z7)) =1~ fa(z1op(zz) o p*(z3)0...0 0" *(zy) 0 b)

> To{l = fa(z1),1 — fap(2),1 = fa(o®(xs)), ...,
1= fa(¢™ 2(zn)), 1 - fa(b)}

2 Tof{l — fa(@1), 1 = fa(z2),1 = fa(zs), ...,
1— fa(zn),1— fa(b)}

2 To{l = fa(z1), 1 = fa(z2),1 = fa(zs), ..., 1= falzn)}.

From (4) and (7)of [2],we have

Thus

t4(Z)

and

1 - fa(Z)

i

vV IV IV

-1

T = (p(x) 0 p*(z)o0...0 0" (z) o b)

ta ((go(x) op(z)o...0p" 3 (z)o0 b)_l)

ta (p(z) o P*(z)o...0 0" %(z) 0 b)
To{ta(p(2)), talp® (@), ..., ta(e" 2(2)), ta(b)}
To{ta(z), ta(d)} = ta(z).

VIV v

1—f4a ((4,0(.’1)) o @2(:8) o0...0 @"‘2(33) o b)_l)
1— fa(p(z)op*(z)o...0 9" 2(z)0 b)

Tn{l - fA((p(x))v 1- fA(@Q(x)), (a3 1- fA((pn_
Tnf{l = fa(z),1 = fa(®)} =1 — falz).

*(2)), 1~ fa(b)}

This completes the proof.

Corollary 3.16. If (G, f) is a ternary group,then any T—vague subgroup of

reto(G, f) is a T—vague ternary subgroup of (G

»f)-

Proof. Since @ is a neutral element of a group ret, (G, f) then V4(a) = Va(z) for

allz € G.Thus V4(a) > Va(a) .But in ternary group a =

Vala) = Va(a)

a for any a € G,whence
= Va(@) > Va(z) .So,Va(a) = Va(z) for all € G.This means

that the assumption of Theorem 3.15 is satisfied.
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Example 3.17. Consider the ternary group (Zi2, f),derived from the additive
group Zi2 Let A be a T—vague subgroup of the group of ret; (G, f) induced by
subgroups S1 = {11},5; = {5,11} and S5 = {1,3,5,7,9,11}.

Define a vague set A as follows:

[0.8,0.02]  if z=11,
[0.6,0.04] if z=5,
0.4,0.06] if z=1,3,7,9,
0.2,0.08] if ¢S5

Then t4(5) = ta(7) = 0.4#0.6 = t4(5). Hence A is not a T—vague ternary
subgroup of (Z3, f).

A(z) =

Observations. From the above Example 3.17 it follows that:

(1) There are T—vague subgroups of ret, (G, f) which are not T—vague n-ary
subgroup of (G, f).

(2) In Theorem 3.15 the assumption Va(a) = Va(z) can not be omitted.In
the above example we have t4(1) = 0.4 < 0.6 = t4(5).

(3) The assumption V4(a) = Va(z) cannot be replaced by the natural as-
sumption V4(@) = Va(z). (@ is the identity of ret, (G, f)).

In the above example 1 = 11, then t4(11) > ta(x) and 1 — fa(11) > 1— fa(z)
for all z € Z5.

Theorem 3.18. Let (G,f) be a n-ary group of b-derived from the group
(G,0).Any vague set A of (G,0) such that Va(b) = Va(zx) for every z € G is a
T—vague n-ary subgroup of (G, f).

Proof. The condition (TVnS1) is obvious.To prove (TVnS2),we have n-ary group
(G, f) b-derived from the group (G, o),which implies Z = (2”72 o b)~!, where
2"~? is the power of z in (G, 0)[4] .

Thus,for all z € G

ta(@) = ta((z"2ob)7h)
> Tofta(z"?),ta(b)}
= tA(:c).
and
1—fa@ = 1-fa((z"2ob)™)

> To{l - fa(@"™?),1~ fa(b)}
1-— fA(J))

Il

This complete the proof.
Corollary 3.19. Any T—wvague group of a group (G,o) is a T—vague n-ary
subgroup of a n-ary group (G, f) derived from (G, o).

Proof. If n-ary group (G, f) is derived from the group (G, o) then b = e.Thus
Va(e) = Va(z) for all z € G.
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4. T,-product of vague n-ary relations
Definition 4.1. A vague n-ary relation on any set GG is a vague set

V:G"=GxGx..xG(n times) — [0,1].

Definition 4.2. Let A be vague n-ary relation on any set G and B be a vague
set on G.Then A is called T—vague n-ary relation on B if

Va(z}) = tmaz(Vg(z1), V(z2), ..., VB(20)).
for all z7 € G.

Definition 4.3. Let A} = Ay, Ao, ..., A, be vague sets in G.Then direct T),-
product of A7 is defined by

(Va, x Va, x ... x Vu ) aT]) ~ tmaz(Va, (21), Va,(22), ..., Va, (zn)), V2 € G.

Lemma 4.4. Let T, be a function induced by t-norms and let A} be vague sets
in G.Then

(1) Vg, x Vg, X ... x V4 is a T—vague n-ary relation on G,

(%) (A1 X A2 X ... X Ap)a,p) = (A1)(a.8) X (A2)(a,8) X - X {(An)(0.6)5
for all t € [0, 1].

Proof. The proof is obvious.

Proposition 4.5. Let T, be a function induced by t-norms and let Ay, Aa, ..., Ay
be T—vague n-ary subgroup of (G, f).Then, Ay x Ay X ... X A, is a T—vague
n-ary subgroup of (G™, f).

Proof. For zt € G and f(z7) = (f1(z]), ..., fuz])) € (G", f), we have

), -
(ta, X ta, X, ..., xta Y (f(z ))
= (L4, X tay X,y xta, ) (f1(@]), ooy ful2]))
= Tnfta, (f1(z])), ta, (fo(@])) . tas (fal(2]))}
> To{Tn{ta, (1), ta, (T2)s oo ta, (Tn)}s oo
Tofta,(z1),ta, (@), .., ta, (@)} }
= Tn{(tAl X ta, X .. X tAn)(‘Tl-, ...,xl), ey
(ta, X tay X oo X ba, HTny ooy ) }
=T {(ta, X ta, X oo X ta, ) (@1)y ey (Bay X ta, X oo X T4, ) (@n)}

and

1- (fAl X fAQXv ey XfAn)(f(xrll))
= (1 - fA1 x1- fAQ X,y X1 = fAn)(fl(x?)7 ad fn(x?))
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= To{l = fa, (f1(2D), 1 = fa,(f2(2])).cey 1 = fag (Fu(2}))}
2 ToATo{l = fa, (21),1 = fa,(22), ., 1= fa,(xn)}, ...,
To{1 = fa,(21),1 = fa,(2), ..., 1= fa,(zn)}}
=T {1~ (fa, X fa, X o X fa, ) (@1, .00y 1), ...\
1= (fa, X fag X ... X fa, ) (Tny v, 1)}
=To{l = (fa, X fa, X .. X fa, )(z1),...., 1 — (fa, X fag X oo X fa, )zn)}

For all z = 27,7 =T} € G™ and , we have

(tA1 Xta, X ... X tAn)(f) = (tA1 Xta, X ... X tA")(fl, ,fn)
= Tu{ta,(T1), ... t4,(Tn)}

To{ta,(z1), .., ta,(zn)}

(ta, X ta, X ... x ta )(z])

(ta, X ta, x ... x ta, )(z).

v

This completes the proof.

The following corollary is the immediate consequence of Proposition 4.6.

Corollary 4.6. Let T, be a function induced by t-norms and let 11 (Gs, f) be
=1
n
the finite collection of n-ary subgroups and G = I1 G; the T,,-product of G;. Let
i=1
"
A; be a T—vague n-ary subgroup of (G, f), where 1 > i > n. Then,A = [] A;
i=1
defined by

n

Va(z?) = [] Va,(@}) ~ tmaz(Va(z1), Va(za), -.., Va(zn)).

i=1
Then A is a T~vague n-ary subgroup of (G, f).

Definition 4.7. Let AT be vague sets in G.Then, the T}, -product of A%, written
as

AT(@) = (2, [ta, tay ot ) (@), 1= [fa, - fag oo fanlr (@)
is defined by:
[tAl “tay tAn]Tn(x) = Tn(t,q1 (l‘), ta,{(x), ...,tAn(:II))
and
1- [fAl ) fAz T fAn]Tn(x) = Tn(l - fA1 ('T)v 1- fA2($)7 shey 1- fAn(‘T))7
for all z € G | respectively.

Theorem 4.8.  Let AT be T—wvague n-ary subgroups of (G, f).IfTr is a
function induced by t-norms dominates T, that is,

To(Tn(20), Ta®1)s - Ta(2])) 2 Ta(T3 (@1, 61, ov0s 20),s oo, oy Y ooy 20))
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for allz%,y7, ..., 27 € [0,1]. Then T} -product of A} is a T—vague n-ary subgroup
of (G, f).
Proof. Let 27 € G, we have

[ta, ~ta, -t o (f(2]))

=T, (ta, (F(#1)), ta (f(21)), ot (f(2])))

>T*( Tu(ta, (1), ta, (@2), -ty (@n)), oo, Talta, (1), ta, (22), - ta, (20)
To(T, (ta, (1), ta, (1), s ta, (1)), oo, Tt 4 (Tn), 4 (Tn)s vy ta, (T0)))
([tA1 Asg --~'tAn]T;:(331)7~--a[tA1't As ""'tAn]T;{(zn))'

and

L= {fa, - fa, - fa o (f(2D))
=To(1 — fa, (f(27)), 1 = fa, (f(2D)), ..., 1 = fa, (f(2])))
2 To(To(l = fa,(z1),1 = fa,(x2), ..., 1— fAl(a?n))
To(l = fa,(®1),1 = fa,(x2), ..., 1~ fa,(zn))
> To(Ty (1= fa, (%1),1 — fa,(21),...,1 — fAn( 1)), -
T3(1 = fa,(@n), 1= fa,(@n), s L = fa,(zn))
=Tl —[fa, fa, " fAn]T;(azl), ey L=1fa, - fa, oo fAn]T;; (zn))-

For all x € G, we have

*

[ta, - ta, = oo tAn]T;; (z) = Tr(t4,(T), t4,{(T), ..., ta,(T))
2 T(ta,(@),ta,(7), .. ta,(z))
= [tAl ‘A, ’-~-'tAn]T;(x)

and

V= [fay - faz o fa,]r: (@) = Ty(1— fa,(@),1 - fa,(T), ..., 1= fa, (F))
T:{(l - fA1(x)7 1- fAz (l‘), ) 1- fAn ('T))
L—[fa,  fag oo fau)re ().

v

This completes the proof .

Let (G, f) and (G, f) be an n-ary groups.A mapping g : G — G’ is an onto
homomorphism.Let T, and T} be functions induced by t-norms such that T
dominates T,,. If A7 are T—vague n-ary subgroup of (G, f), then the T*-
product of A} is a T—vague n-ary subgroup. Since every onto homomorphic
inverse image of a T—vague n-ary subgroup, the inverse images

97 (A1), 97 (A2), -, g (An) (4)
and
(07 (Itay tay oo tagre) s (U= [fay - fay - oo fas)rs)) (5)
are T'—vague n-ary subgroup (G, f).

The following theorem provides the relation between (4) and (5).
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Theorem 4.9. Let g : G — G'be an onto n-ary homomorphism of n-ary
groups. Let T be a function induced by t-norm such that T dominates T,
Let A} be T—vague n-ary subgroup of (G,f). If ([ta, -ta, - .- ta,]rs,1—
[fA1 fag c e fa, ]T*) is a Ty~ product of A}, and (g 1(tA1) g (ta,)
97 (ta, )]T* 1 - g7 (fa,) - _l(fAz) e 97N (fa)]Te) is the Ty-product of
97 w1), 97 (k2), g (). then
(07 [ty ~tay oo ta,)e), 07 (L= [fay - fag - s fan]re))
= (g7 (ta) - 97 (tas) - o g (BT, = [97 M (Fa))
g7 Far) o g () Te)-
Proof. Let z € G,we have
g7 ([t tay o taylmy) (@)= ([ta, - tay - o ta )1 )(9(2))
=T (¢4, (9(2)), ta. (9(x)), ... - ta, (9(2)))
= T;(g—l(tAl)(x)7g_l(tAz)(x)v'-‘7g_l(tAn)(x))
= (g7 (ta) - 97 (tas) - o 97 (Ea)]Ty
and :
=g ([fay - fan o Fau)re) (@)= (1= [fa, - fa, o - fa,)rs)(9(2))
:T':(l_fAl( ( ) 1 — fAz(g(x))a"'a

)
1 - fa,(9(z)))
=Tr(1 =g ' (fa,)(@),1 = g7 (fa,)(2),
o 1= g7 (fa,)(2))

= [_l(fAl) 97 (fan) - o g7 (fa )y
This completes the proof.

5. Conclusions

The n-ary group theory has many application in an automata theory ,quan-
tum theory and computer sciences problems.In this paper,we have defined T-
vague n-ary subgroups and have studied some of their properties.If the unknown
or undecided part [1 —t4(z) — fa(z)] is zero for all z(of the group G),then the
Biswas’s vague group[27] is reduces to a Rosenfeld’s fuzzy group [31].It is also
justified that interval-valued fuzzy sets [33] are not vague sets.
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