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WAVEFRONT SOLUTIONS IN THE DIFFUSIVE
NICHOLSON’S BLOWFLIES EQUATION WITH NONLOCAL
DELAY

CUN-HUA ZHANG

ABSTRACT. In the present article we consider the diffusive Nicholson’s
blowflies equation with nonlocal delay incorporated into an integral con-
volution over all the past time and the whole infinite spatial domain R.
When the kernel function takes a special function, we construct a pair of
lower and upper solutions of the corresponding travelling wave equation
and obtain the existence of travelling fronts according to the existence re-
sult of travelling wave front solutions for reaction diffusion systems with
nonlocal delays developed by Wang, Li and Ruan (J. Differential Equations,
222(2006), 185-232).
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1. Introduction

It is well known that many biological and physical problems can be described
by differential equations with delays, that is, functional differential equations.
For example, to explain the oscillatory phenomenon observed by Nicholoson [6]
in the Austrian sheep-blowfly (Lucia cuprina) population, Gurney, Blythe and
Nisbet [2] proposed the following well known Nicholoson’s blowflies equation

du

dt
where p is the maximum per capita daily egg production rate, 1/a is the size
at which the blowfly population reproduces at its maximum rate, § is the per
capita daily adult death rate and 7 is the generation time. Equation (1) has
been studied extensively by many researchers and many interesting results have
been obtained (see [1, 7, 8] and the references cited therein). After rescaling

= —bu(t) + pu(t — T)e"w(t_T), (1)
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u* = au, t* =7t, 7* = 7, # = p/J and dropping the asterisks, the Nicholoson’s
blowflies equation (1) becomes

%% = —71u(t) + pru(t — 1)e 21, (2)

In the process of proposing model (1), in fact, it is assumed that the blowfly
population encounter each other in proportion to their average density. As
pointed out by Law et al.[3], however, spatial structure may make it impossible
for organisms to encounter each other in proportion to their average density. The
random collision of individuals assumed in the above model may not represent
interactions among organisms. Taking the spatial structure into account, Yang
and So [14] extended (1.2) to the following diffusive form:

Ju(z,t)
ot

In the case when spatial domain is a bounded open domain in R"(n € N) with a
smooth boundary, Yang and So [14] considered the global attractivity of positive
steady state and the oscillation of solutions of equation (3) under homogeneous
Neumann boundary conditions. Under homogeneous Dirichlet boundary con-
ditions, So and Yang [9] investigated the global attractivity of the equilibrium
of equation (3). In addition, some numerical and Hopf bifurcation analysis of
this model was carried out by So, Wu and Yang [10]. When the spatial variable
is confined on the whole real line R, So and Zou [11] obtained the existence of
travelling wave front solutions of equation (3). For the fundamental theories of
reaction diffusion equations with delay, we refer to the monograph of Wu [13].

Recently, by incorporating nonlocal delays described by an integral convolu-
tion over the whole infinite spatial domain R and the whole time internal up
to now, Li, Ruan and Wang [4] proposed the following Nicholson’s blowflies
equation with nonlocal delays

du(z,t)
ot

= dAu(z,t) — Tu(z, t) + pru(e, t — 1)e @1, (3)

= dAu(z,t) — Tu(z,t) + pr((g * u)(z, £))e” V@Yt 50,2 € R,
(4)
t +o0o
where (g * u)(z,t) = / / g{z — y,t — s)u(y, s)dyds, and the convolution

kernel g(y, s) is an integral and nonnegative function satisfying the following

normalized condition
400 —+o0
[ stwoyas =1 (5)
0 —0

By applying the existence result of travelling wave front solutions for reaction-
diffusion systems with nonlocal delays developed by Wang, Li and Ruan [12],
they investigated the existence of travelling fronts of equation (4) when the
g(z,t) takes the following functions '

L =% 6(2).0 -
—e~ 70 8(x), 6(t 200 ) )
To (=) ()\/4TPO i To. . /Ampo
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and
1 _+« 1 22

—e 17
7_Oe 0 me
where 79 > 0, pp > 0 and §(-) denotes Dirac delta function. In addition, they also
studied the dependence of minimal wave speed on the delay and the mobility of
population, and found that delay can induce slow travelling wave fronts and the
mobility of population can increase fast travelling wave fronts. More recently,
Lin {5] generalized the convolution kernel in [4] and obtained the existence of
travelling front solutions of equation (4) when g(z,t) takes the following forms:
1ot e Lot e 1 2 1 i
m?e 0 §{x), T e T \/me 5 ,5(t)%e o,n=1,2,---.
In this paper, we consider the existence of travelling wave front solutions of
equation (4) when the convolution kernel g(z,t) takes the following function

1 gt t 1 =2
2,1) = ~% 51> 0,00 > 0,n=1,2,--.
A e Y. et ©)

The remaining part of this paper is organized as follows. In Section 2, we state
the existence result of travelling wave front solutions of scalar reaction-diffusion
equation with nonlocal delays according to the existence theory of travelling
fronts for reaction-diffusion systems with nonlocal delays developed by Wang, Li
and Ruan [12]. In Section 3, we construct a pair of lower and upper solutions of
the corresponding travelling wave.equation and obtain the existence of travelling
fronts of the diffusive Nicholson’s blowflies equation (4) when the convolution
kernel g(z,t) has the form (6).

2. Existence result of travelling wave front solutions

In this section, we state an existence theorem of travelling wave front solutions
for a scalar reaction-diffusion equation with nonlocal delays according to the
existence theory of travelling fronts for general reaction-diffusion systems with
nonlocal delays developed by Wang, Li and Ruan [12]. Consider the following
scalar reaction-diffusion equation with nonlocal delays

ou(x,t) Dé’zu(ac, t)
ot Ox?

+ f(u(:r,t), (gl * u)(m,t), T (gm * u)(m,t)),t >0,z € R,
(7)
where u(z,t) € R, D > 0, f € C(R>™ R) and
t +o0 ’
@@= [ [ -yt sul.s)duds

The nonnegative integrable functions g;(z,t)(j = 1,---,m) are called the delay
kernel, and satisfy the conditions

) oo pto0
g;j(—x,t) = g;(x,t) and / / gi(y, s)dyds =1 (8)
0 —00
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and the hypothesis
(Hyp): fj;o gj(z,t)dz is uniformly convergent for ¢ € [0,a] with a > 0(j =
1,---,m), that is, for any given &€ > 0, there exists an M > 0 such that
f;foo gj{z,t)dz < € for any t € [0, al.
Set u(z,t) = p(z) where 2 = z + ¢t and ¢ > 0, then system (7) can be
rewritten into the following second order differential equation
—Dy"(2) + ¢/ (2) = f(p(2), (91 *9)(2), -+, (gm x 0)(2)), 2 €ER,  (9)
where

+oo  ptoo
(g5 * 0)(2) = /0 / 9;(y, s)p(z —y —cs)dyds,j =1,--- ,m.

A travelling wave front solution of (7) with wave speed ¢ > 0 is a monotone
function ¢ € BC?(R, R) satisfying (9) and the following limit boundary condi-
tions

@(—00) =0 and ¢(+o00) = K with K > 0. (10)

From [12], to guarantee the existence of travelling wave front solutions of
equation (7), we also need the following monotonicity conditions and assump-
tions:

(H1): There exists v > 0 such that

flp2(2), (91 % p2)(2), -+, (gm * 2)(2)) + Yep2(2)
> fp1(2), (g1 x w1)(2), -+ 5 (gm * 1)(2)) + 701 (2),
where ¢1,00 € C(R,R) satisfy 0 < o1 < p2 < K inz € R;

(Hz): f(p,--+,u) #0for 0 < p < K;
(Hs): f(0,---,0)= f(K,---,K) =0.
Next, we define the following profile set

(i) ¢ is increasing in R;
'=4qpeY: (i) 0 < lim o(z) < K and ligl =K {

and
BC[0,K])={p € BC(R,R) : ¥ < p <K},
where Y = {p € BC(R,R) : ¢/, ¢" € L>(R,R)}.
In order to state the existence theorem of travelling wave front solutions for the

scalar reaction-diffusion equation (7), we give the definition of upper solutions
and lower solutions of equation (9).

Definition 1. A continuous function ¢ : R — R is called an upper solution of
(9)-if ¢ and " exist almost everywhere and are essentially bounded on R, and
@ satisfies

—D¢"(2) + ¢¢'(2) 2 f(0(2), (g1 * 9)(2), -+ (gm * 9)(2)), a-e. on R. )
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A lower solution of (9) can be defined in a similar way by reversing the inequality

(11).

Theorem 1. Assume that (Ho)-(Hy4) hold, v € BC[0, K]NY with ¢ # 0 and
im ¥(z) =0, ¢ € I with ¢ < ¢, are lower solution and upper solution of (9),

respectively. Then (7) has a travelling wave front ¢* which is increasing and
satisfies (10) with ¢ < ¢* < ¢.

3. Travelling fronts of equation (4) with delay kernel (6)

In this section, we study the existence of travelling front solutions of equation
(4) when the delay kernel g(xz,t) takes the convolution kernel (6) by applying
theorem 1. The key purposes in this section are to establish a pair of lower
and upper solutions of the travelling wave equation of (4), which satisfy the
conditions in theorem 1. It is easy to see that equation (4) has two equilibria
u = 0and u = Inf when § > 1. Thus, it is possible that equation (4) has
travelling wave front solutions connecting the equilibriau=0andu=lng:=k%
only if 3 > 1. To ensure the solutions of travelling wave equation (12) is in
the interval [0, k], we always assume 3 > 1 in the following discussions. Let

u(x,t) = ¢(2) where z = z + ¢t and ¢ > 0. Then the travelling wave equation of
(4) is

dy" (z) — ¢’ (2) — Tp(2) + Br(g * gp)(z)e“(g*w)(z) =0,z € R, (12)

where

+oo  ptoo
(g*¢)(2) = /0 /_ 9(y, 8)p(z —y — cs)dyds.

From [4], we know that travelling wavefront solutions of equation (4) has the
following properties.

Lemma 1. If 5 > 1, then any travelling wave solution ¢(z) of (4) satisfies
o(z) < B/e everywhere.

Lemma 2. If 3 < e, then any travelling wave front p(z) of (4) satisfies p(z) <
Infg <1 everywhere.

Lemma 3. Let f(p(2), (g * ¢)(2)) = —7p(z) + Br(g * ¢)(2)e”9*?) ) Then
Flo(2), (g x ©){(z)) satisfies the assumption (H;).

Linearizing equaiton (12) at zero solution yields the following linear equation
do'"(z) — e’ (2) — Tp(2) + Br(g x p)(2) = 0,z € R. (13)

Seeking solutions of equation (13) proportional to e**(A € R), one can find that
A should satisfies the equation

+o0  ptoo
dX\? —ch— 7+ B / / g(y, s)e V" dyds = 0. (14)
¢] —oo
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At |

22
If g(z,t) = Zn—l_l)!Te o me-‘*_ﬁa and define the function

eﬂo)\z

Ac()\): (m—1>ﬁT—[T(l—,@)'{"C)\—'d)\z],)\ER,

then equation (14) becomes
A(X) =0. (15)

It is easy to see that Ap(A) = (e”o/\Zﬁ - 1) 74+ d)? > 0 for any A € R since
po>0,7>0and B8 > 1. Now fix ¢ > 0 and consider equation (15) when A > 0.
It is also easy to observe that A {0) = (8 — 1)7 > 0 and

_ poX? \
08 _ 2[poA(1 +dmo) —mmoder o o0 (16)

ox (1 + Arge)?n—1
From (16), one can easily see that
OA(N) _ . O0A(N)
e N (2nmofBT +1)c < 0 and /\Er}rloo T +00

Thus, for fixed ¢ > 0, there exists at least a A, = A(c) > 0 such that 8—%3(—’\—)
= 0. In addition, for fixed A > 0,
lim Ac(A) = —o0.

c—+00

A=A,

Therefore, we have the following result.

Lemma 4. There exist ¢* > 0 and A* > 0 such that
(i): Acx(X*) =0 and

OA(N) S
oA A=A* o
(ii): Ac(N) >0 for0<c<c* and X > 0;
(iii): Fquation (15) when c > c* has two positive roots A1 and \g such that
0< A1 < Ay and

AN =¢ <0, M1 <A< Ag,

>0, 0< A< AL,
>0, A> do.
Next we shall construct a pair of upper and lower solutions of equation (12).
We have first have the following result.

Lemma 5. Let ¢ > ¢* and A\, > 0 with ¢* and Ay being defined by Lemma 4.
Then ¢(z) = min {k, ke’\lz} is an upper solution of equation (12) and ¢ € T.
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Proof. ¢ €T is obvious by the definition of ¢(z) and we need only to verify ¢(z)
is an upper solution of equation (12).

From the definition of ¢(z), we know that ¢(z) = k when z > 0 and thus
¢'(z) =0, ¢"(2) =0 for 2> 0. Therefore, when z > 0,

+oo +oo
(9% 9)(2) < k/o /_ g(y, s)dyds = k

and thus
49" (2) = ¢/ () = 79(2) + fr (g * §) ()™ ")
< —7k + Brke* =0

since k = In 3.
When z < 0, ¢(2) = keM*?, ¢/(2) = kA1e** and ¢"(2) = kA\?e**. Hence we
have from the fact that 0 < ¢(z) < ke*1* for 2 € R that when z < 0

dd" (2) — c¢'(2) — T6(2) + Br(g * ¢)(2)e~9*P) ()
= k [(d)\% - C)\l — T)e/\lz + ﬁk_T(g " ¢)(Z)e—(g*¢)(z)jl

IA

k(@ = o - e+ B )02
k [(dA] — ehy — T)eM?

~+o00 +o0 —1 2
1 Sn s 1 — X (z—y—cs)
+6T/ / e e o e\ TV dyds
0 —00 (’I’L— 1)' 7.(7)1 \/471'/)0

. epo)\? _ _
kldk1—0A1+T(ﬁ—1)+<m 1>BT}_O'

This proves that ¢(z) = min {k, kekl?} is an upper solution of equation (12).

IA

Next we construct a lower solution of equation (12).

Lemma 6. Let ¢ > ¢* and Ay, Ay be two real positive roots of (15) defined
by Lemma 4. Choose € > 0 such that ¢ < Ay < A +¢& < A2 and ¥{(2) =
max{0, k(1 — Me**)e**} with M > 1. Then for sufficiently large M, ¥(z) is a
lower solution of equation (12).

1
Proof. Let z; = - ln —. Then z; < 0 and
e M
IR for z > 2y, .
wlz) = { k(1 — Me*)eM*  for 2 < 2.

If z > 21, then ¢(z) = 0. Notice that ¥(z —y — ¢s) > 0 for any z € R, we
have when z > z;

d¢"(2) = e/ (2) = 7¢(2) + Br(g * ) (2)e ™"V = Br(g x §)(z)e” T > 0.
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If 2 < z1, then ¥(2z) = k(1 — Me?)e# and hence Y (z) = kA — M\ +
g)es*leM* Y(z) = kX2 — M (A +e)?e e?]e*1%. Note that ¢( y 2 k{1- Me”) Az
for z € R, we have when z < z;

(g *¥)(2)

+co +0 n—l 2
0 - o TP
xeM(z=y= CS>dycz’s
“+o0 -1 R 1 42
- kehz/ / (m 1)! e A7 p e‘meM(—y—CS)dde
oo - TO 0
—kM ()\1+e)z/ / P | e—%e{,\l-ye)(—y—cs)dyds
e
00 (’ﬂ, - 1), 7-0 V 47’Tp0
poA2 Ay+e)?
L AUCIN YOV ML i 7
(1+ Ai7pe)? (I+7 (A +¢)e)"
and
epoz\r‘{

SkeMF e
(g*?ﬁ)(z) x> ke (1+ )\17'06)”

Also, notice that 0 <e < Ay < A\j +¢ < Az and z < 21 < 0, we have
22Xz = ()\1 + )\1)2 < ()\1 -}—6)2.

Therefore,
2p0A%
2 < 12 (Mte)z € .
{(g*w)(z)] —k € {1+)§1Toc 2n°
Thus
Ay (2) — e/ (2) — T9(2) + Br(g * ) (2)e~ (V)
> keM® |dA2Z — e e 1
> ke 1—ca+{(B-1)71+p8r m_
—kMeP1te)z [dA1 +e)2 — (A +¢) + B-1r
epo(Aite)?
. —(gxy)z) _ 4
* ((1+7’0 (M +e)e)" 1)} *hrig =) [6 }
> kMM A +e) + frig e )(z) [ @V — 1]
> —kMePFEOIA (N +6) — Br (g + ¥)(2))
EMePite)zp L2 e(Aite) el
> 1 z — 1 £
< € e(A1 +e) - fri’e (14 Aympe)2n
— _peMato) priZe?roX:
ke Ac(M+e) [M + Ac(A + &) (1 + Ay mpe)2n
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that is,
' (2) = e/ (2) = Tip(2) + Brig + ) (2)e” (I

2
Brk2e2rori

> _ (/\1+E)Z
2 heTTAM ) M e S T Ao

(17)

It is easy to see that the right side of inequality (17) is positive when
Brk2e2rorl

Ac(A 4+ ) + Aroc)?n

since Ac(A; +¢) < 0. This completes the proof.

M > -

From Lemmas 3, 5, 6 and Theorem 1, we have the following existence theorem
of travelling front solutions of equation (4).

Theorem 2. If 1 < 3 < e, then there ezists ¢* > 0 such that for every ¢ > c*,
equation (4) has a travelling wave front solution connecting the trivial equilibrium
u = 0 with the positive equilibrium u = In 3.
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