References
- Al-Osh, M. A., Aly, E. -E. and A. A. (1992). First-order autoregressive time series with negative binomial and geometric marginals, Communications in Statistics-Theory and Methods, 21, 2483-2492. https://doi.org/10.1080/03610929208830925
- Al-Osh, M. A. and Alzaid, A. A. (1987). First-order integer-valued autoregressive (INAR(1)) process, Journal of Time Series Analysis, 8, 261-275. https://doi.org/10.1111/j.1467-9892.1987.tb00438.x
- Alzaid, A. A. and Al-Osh, M. A. (1988). First-order integer-valued autoregressive process: distributional and regression properties, Statistica Neerlandica, 42, 53-61. https://doi.org/10.1111/j.1467-9574.1988.tb01521.x
-
Alzaid, A. A. and Al-Osh, M. A. (1990). An integer-valued
$p^{th}$ -order autoregressive structure (INAR(p)) process, Journal of Applied Probability, 27, 314-324. https://doi.org/10.2307/3214650 - Bockenholt, U. (1999). Mixed INAR(1) Poisson regression models: Analyzing heterogeneity and serial dependencies in longitudinal count data, Journal of Econometricsc, 89, 317-338.
- Brannas, K. and Hellstrom, J. (2001). Generalized integer-valued autoregression, Econometric Reviews, 20, 425-443. https://doi.org/10.1081/ETC-100106998
- Davison, A. C. and Hinkley, D. V. (1997). Bootstrap Methods and Their Application, Cambridge University Press, Cambridge.
- Du, J. -G. and Li, Y. (1991). The integer-valued autoregressive (INAR(p)) model, Journal of Time Series Analysis, 12, 129-142. https://doi.org/10.1111/j.1467-9892.1991.tb00073.x
- Freeland, R. and McCabe, B. P. M. (2004). Forecasting discrete valued low count time series, International Journal of Forecasting, 20, 427-434. https://doi.org/10.1016/S0169-2070(03)00014-1
- Jung, R. and Tremayne, A. (2006). Coherent forecasting in integer time series models, International Journal of Forecasting, 22, 223-238. https://doi.org/10.1016/j.ijforecast.2005.07.001
- Kim, H. -Y. and Park, Y. (2006a). Prediction mean squared error of the poisson inar(1) process with estimated parameters, Journal of the Korean Statistical Society, 35, 37-47.
- Kim, H. -Y. and Park, Y. (2006b). Bootstrap confidence intervals for the INAR(1) process, The Korean Communications in Statistics, 13, 343-358. https://doi.org/10.5351/CKSS.2006.13.2.343
- Kim, H. -Y. and Park, Y. (2008). A non-stationary integer-valued autoregressive model, Statistical Papers, 49, 485-502. https://doi.org/10.1007/s00362-006-0028-1
- Kunsch, H. R. (1989). The Jackknife and the Bootstrap for General Stationary Observations, The Annals of Statistics, 17, 1217-1241. https://doi.org/10.1214/aos/1176347265
- Latour, A. (1998). Existence and stochastic structure of a non-negative integer-valued autoregressive process, Journal of Time Series Analysis, 19, 439-455. https://doi.org/10.1111/1467-9892.00102
- McKenzie, E. (1985). Some simple models for discrete variate series, Water Resources Bulletin, 21, 645-650. https://doi.org/10.1111/j.1752-1688.1985.tb05379.x
- Park, Y, Choi J. W. and Kim, H.-Y. (2006). Forecasting cause-age specific mortality using two random processes, Journal of the American Statistical Association, 101, 472-483. https://doi.org/10.1198/016214505000001249
- Steutel, F. W. and van Harn, K. (1979). Discrete analogues of self-decomposability and stability, The Annals of Probability, 7, 893-899. https://doi.org/10.1214/aop/1176994950
- Tay, A. S. and Wallis, K. F. (2000). Density forecasting: A survey, Journal of Forecasting, 19, 235-254. https://doi.org/10.1002/1099-131X(200007)19:4<235::AID-FOR772>3.0.CO;2-L
- Weiss, C. H. (2009a). Monitoring correlated processes with binomial marginals, Journal of Applied Statistics, 36, 391-414.
- Weiss, C. H. (2009b). A new class of autoregressive models for time series of binomial counts, Communications in Statistics - Theory and Methods, 38, 447-460. https://doi.org/10.1080/03610920802233937
Cited by
- Binomial AR(1) processes: moments, cumulants, and estimation vol.47, pp.3, 2013, https://doi.org/10.1080/02331888.2011.605893
- Parameter estimation for binomial AR(1) models with applications in finance and industry vol.54, pp.3, 2013, https://doi.org/10.1007/s00362-012-0449-y