동해 가스하이드레이트 퇴적상 해석 및 분해능 향상을 위한 디컨볼루션 연구

Application of Deconvolution Methods to Improve Seismic Resolution and Recognition of Sedimentary Facies Containing Gas Hydrates

  • Yi, Bo-Yeon (Department of Energy Resources Engineering, Pukyong National University) ;
  • Lee, Gwang-Hoon (Department of Energy Resources Engineering, Pukyong National University) ;
  • Kim, Han-Joon (Korea Ocean Research and Development Institute) ;
  • Jeong, Gap-Sik (Korea Ocean Research and Development Institute) ;
  • Yoo, Dong-Geun (Korea Institute of Geoscience and Mineral Resources) ;
  • Ryu, Byoung-Jae (Korea Institute of Geoscience and Mineral Resources) ;
  • Kang, Nyeon-Keon (Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2010.08.06
  • 심사 : 2010.11.08
  • 발행 : 2010.11.30

초록

동해 울릉분지에서 가스하이드레이트 탐사를 목적으로 획득된 탄성파 중합 자료에 다음 세 가지의 디컨볼루션을 적용하여 지층경계면을 분해하는 특성을 분석하였다: (1) 트레이스별 최소위상 스파이킹 디컨볼루션 (2) 트레이스 평균 최소위상 디컨볼루션 (3) 검층자료를 이용한 디컨볼루션. 트레이스별 최소위상 스파이킹 디컨볼루션의 경우 수직 분해능은 증가하지만 수평 연장성이 감소하는 경향을 보였다. 각 트레이스에서 구한 최소위상 파형요소를 평균하여 구한 대표 파형요소를 이용하는 두 번째 방법은 전체적으로 트레이스별 스파이킹 디컨볼루션의 결과와 비슷하지만 해저면 모방 반사면이 보다 연속적이고 일관된 결과를 보이며 하부 반사면들이 더 뚜렷하게 나타난다. 세 번째 방법의 결과는 쇄설류 퇴적체 내부가 좀 더 상세하게 나타나며 해저면과 해저면 모방 반사면의 파형이 이상적 영위상 형태를 보이며 반사면의 연속성이 향상되었음을 보여준다. 이러한 특성은 가스하이드레이트 안정영역의 하부경계를 지시하는 해저면 모방 반사면의 진폭특성분석과 퇴적상 해석을 향상시키므로 탐사 지역의 가스하이드레이트 분포와 자원량을 정확히 추정하는 데에 도움을 준다.

Three deconvolution methods were applied to stacked seismic data obtained to investigate gas-hydrates in the Ulleung Basin, East Sea: (1) minimum-phase spiking deconvolution, (2) minimum-phase spiking deconvolution using an averaged wavelet from all traces, and (3) deterministic deconvolution using a wavelet with phases computed from well-logs. We analyzed the resolving property of these methods for lithological boundaries. The first deconvolution method increases temporal resolution but decreases lateral continuity. The second method shows, in an overall sense, similar results to the spiking deconvolution using a minimum phase wavelet for each trace; however, it results in a more consistent and continuous bottom-simulating reflector (BSR) and better resolved sub-BSR reflectors. The results from the third method reveal more detailed internal structures of debris-flow deposits and increased continuity of reflectors; in addition, the seafloor reflection and the BSR appear to have changed to a zero-phase waveform. These properties help more precisely estimate the distribution and reserves of gas hydrates in the exploration area by improving analysis of facies and amplitude of the BSR.

키워드

참고문헌

  1. Andreassen, K., Hart, P. E., and MackKay, M., 1997, Amplitude versus offset modeling of the bottom simulating reflection associated with submarine gas hydrates, Marine Geology, 137, 25-30. https://doi.org/10.1016/S0025-3227(96)00076-X
  2. Dragoset, B., 1984, A comprehensive method for evaluating the design of air guns and air gun arrays, Presented at Offshore Tech. Conf.
  3. Dragoset, B., 2000, Introduction to air guns and airgun arrays, The Leading Edge, 19, 892-897. https://doi.org/10.1190/1.1438741
  4. Hargreaves, N. D., 1992, Air-gun signatures and the minimumphase assumption, Geophysics, 57, 263-271. https://doi.org/10.1190/1.1443239
  5. Henry, S. G., 1997a, Catch the (seismic) wavelet, Explorer (March).
  6. Henry, S. G., 1997b, Zero phase can aid interpretation, Explorer (April).
  7. Hyndman, R. D. and Spence, G. D., 1992, A seismic study of methane hydrate marine bottom simulating reflectors, J. Geophysical Research, 97, 6683-6698. https://doi.org/10.1029/92JB00234
  8. Kvenvolden, K. A., and Barnard, L. A., 1983, Hydrates of natural gas in continental margins, In: Watkins, J.S. and Drake, C.L. (Eds.), Studies in Continental Margin Geology, pp. 631-640. AAPG Memoir 34.
  9. Lee, G. H., Kim, H. J., Han, S. J., and Kim, D. C., 2001, Seismic stratigraphy of the deep Ulleung Basin in the East Sea (Japan Sea) back-arc basin, Marine and Petroleum Geology, 18, 615-634. https://doi.org/10.1016/S0264-8172(01)00016-2
  10. Lee, G. H., Kim, H. J., Suh, M. C., and Hong, J. K., 1999, Crustal structure, volcanism, and opening mode of the Ulleung Basin, East Sea (Sea of Japan), Tectonophysics, 308, 503-525 https://doi.org/10.1016/S0040-1951(99)00113-4
  11. Lee, G. H. and Suk, B., 1998, Latest Neogene-Quaternary seismic stratigraphy of the Ulleung Basin, East Sea (Sea of Japan), Marine Geology, 146, 205-224. https://doi.org/10.1016/S0025-3227(97)00123-0
  12. Schoenberger, M., 1974, Resolution comparison of minimum-phase and zero-phase signals, Geophysics, 39, 826-883. https://doi.org/10.1190/1.1440469
  13. Yilmaz, O., 2001, Seismic Data Analysis, Society of Exploration Geophysics.
  14. Ziolkowski, A., 1991, Why don't we measure seismic signatures?, Geophysics, 56, 190-201. https://doi.org/10.1190/1.1443031
  15. Ziolkowski, A. and Metselaar, G., 1984, The pressure wave field of an air-gun array, 54th Ann. Mtg., SEG, Expanded Abstracts, 274-276.
  16. Ziolkowski, A., Parkes, G., Hatton, L., and Haugland, T., 1982, The signature of an air-gun array-Computation from nearfield measurements including interactions, Geophysics, 47, 1413-1421. https://doi.org/10.1190/1.1441289