Experimental Study on Cellular Instabilities in Diluted Syngas-Air Premixed Flames

희석제가 첨가된 합성가스-공기 예혼합화염에 있어서 셀 불안정성에 관한 실험적 연구

  • ;
  • 송원식 (부경대학교 기계공학과) ;
  • 박정 (부경대학교 기계공학과) ;
  • 김정수 (부경대학교 기계공학과) ;
  • 윤진한 (한국기계연구원 그린환경에너지기계연구본부) ;
  • 길상인 (한국기계연구원 그린환경에너지기계연구본부)
  • Received : 2010.08.30
  • Accepted : 2010.10.09
  • Published : 2010.10.30

Abstract

Experiments were conducted to investigate the effects of added diluents (carbon dioxide, nitrogen, and helium) on cellular instabilities in outwardly propagating spherical syngas-air premixed flames. Laminar burning velocities and Markstein lengths were measured by analyzing high-speed schlieren images at various diluent concentrations and equivalence ratios. Experimental results showed substantial reduction of the laminar burning velocities and of the Markstein lengths with the diluent additions in the fuel blends. Effective Lewis numbers of helium-diluted syngas-air flames increased but those of carbon dioxide- and nitrogen-diluted syngas-air flames decreased in increase of diluents in the reactant mixtures. With helium diluent, the propensity for cells formation was significantly diminished, whereas the cellular instabilities for carbon dioxide- and nitrogen-diluted syngas-air flames were not suppressed.

본 연구는 구형으로 전파하는 합성가스-공기 화염의 셀 불안정성에 있어서 헬륨, 이산화탄소, 질소의 희석제 첨가효과에 관하여 실험을 수행하였다. 층류화염속도와 Markstein Length는 여러 희석제 농도와 당량비에서 측정된 쉴리렌 이미지를 분석함으로써 측정하였다. 실험결과 반응혼합물에 희석제를 첨가했을 경우 층류화염속도와 Markstein Length는 두드러진 감소를 보였다. 희석제로 헬륨을 첨가한 합성가스-공기화염에서의 유효 루이스 수는 증가했지만 이산화탄소와 질소를 첨가시킨 혼합물에서는 희석제의 첨가량이 증가할수록 유효 루이스 수는 감소하였다. 또한, 헬륨으로 희석시킨 경우 셀 형성은 현저하게 억제된 경향성을 보였으나 이산화탄소나 질소를 첨가했을 경우 셀 불안정성이 완화되는 효과는 없었다.

Keywords

References

  1. Park, J., Keel, S. I., Yun, J. H., Kim, T. K., "Effects of addition of electrolysis products in methane.air diffusion flames," International Journal of Hydrogen Energy, Vol. 32, 2007, pp.4059-4070 https://doi.org/10.1016/j.ijhydene.2007.05.024
  2. Aung, K. T., Hassan, M. I., Faeth, G. M., "Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure," Combustion and Flame, Vol. 109, 1997, pp.1-24 https://doi.org/10.1016/S0010-2180(96)00151-4
  3. Law, C. K., Kwon, O. C., "Effects of hydrocarbon substitution on atmospheric hydrogen.air flame propagation," International Journal of Hydrogen Energy, Vol. 29, 2004, pp.867-879 https://doi.org/10.1016/j.ijhydene.2003.09.012
  4. Tang, C., Huang, Z., Wang, J., Zheng, J., "Effects of hydrogen addition on cellular instabilities of the spherically expanding propane flames," International Journal of Hydrogen Energy, Vol. 34, 2009, pp.2483-2487 https://doi.org/10.1016/j.ijhydene.2009.01.023
  5. Hu, E., Huang, Z., He, J., Zheng, J., Miao, H., "Measurements of laminar burning velocities and onset of cellular instabilities of methane.hydrogen.air flames at elevated pressures and temperatures," International Journal of Hydrogen Energy, Vol. 34, 2009, pp.5574-5584 https://doi.org/10.1016/j.ijhydene.2009.04.058
  6. Miao, H., Jiao, Q., Huang, Z., Jiang, D., "Measurement of laminar burning velocities and Markstein lengths of diluted hydrogen .enriched natural gas," International Journal of Hydrogen Energy, Vol. 34, 2009, pp.507-518 https://doi.org/10.1016/j.ijhydene.2008.10.050
  7. Vu, T. M., Park, J., Kwon, O. B., Kim, J. S., "Effects of hydrocarbon addition on cellular instabilities in expanding syngas.air spherical premixed flames," International Journal of Hydrogen Energy, Vol. 34, 2009, pp.6961-6969 https://doi.org/10.1016/j.ijhydene.2009.06.067
  8. Park, J., Lee, D. H., Yoon, S. H., Vu, T. M., Yun, J. H., Keel, S. I., "Effects of Lewis number and preferential diffusion on flame characteristics in 80%$H_2$/20%CO syngas counter flow diffusion flames diluted with He and Ar," International Journal of Hydro gen Energy, Vol. 34, 2009, pp.1578-1584 https://doi.org/10.1016/j.ijhydene.2008.11.087
  9. Fotache, C. G., Tan, Y., Sung, C. J., Law, C. K., "Ignition of CO/H2/N2 versus heated air in counter flow: experimental and modeling results," Combustion and Flame, Vol. 120, 2000, pp.417-426 https://doi.org/10.1016/S0010-2180(99)00098-X
  10. McLean, I. C., Smith, D. B., Taylor, S. C., "The use of carbon monoxide/hydrogen burning velocities to examine the rate of the CO+OH reaction," Proceedings of the Combustion Institute, Vol. 25, 1994, pp.749-757
  11. Sun, H., Yang, S. I., Jomaas, G., Law, C. K., "High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/ hydrogen combustion" Proceedings of the Combustion Institute, Vol. 31, 2007, pp.439-446 https://doi.org/10.1016/j.proci.2006.07.193
  12. Williams, F. A., Combustion Theory, 2nd ed., Addison-Wesley, Redwood City, CA, 1985, pp.349
  13. Qiao, L., Kim, C. H., Faeth, G. M., "Suppression effects of diluents on laminar premixed hydrogen/oxygen/nitrogen flames," Combustion and Flame, Vol. 143, 2005, pp.79-96 https://doi.org/10.1016/j.combustflame.2005.05.004
  14. Kadowaki, S., Suzuki, H., Kobayashi, H., "The unstable behavior of cellular premixed flames induced by intrinsic instability," Proceedings of the Combustion Institute, Vol. 30, 2005, pp.169-176 https://doi.org/10.1016/j.proci.2004.07.041
  15. Kwon, O. C., Rozenchan, G., Law, C. K., "Cellular instabilities and self-acceleration of outwardly propagating spherical flames," Proceedings of the Combustion Institute, Vol. 29, 2002, pp.1775-1783 https://doi.org/10.1016/S1540-7489(02)80215-2
  16. Bechtold, J. K., Matalon, M., "Hydrodyna mic and diffusion effects on the stability of spherically expanding flames," Combustion and Flame, Vol. 67, 1987, pp.77-90 https://doi.org/10.1016/0010-2180(87)90015-0
  17. Clavin, P., "Dynamic behavior of premixed flame fronts in laminar and turbulent flows," Progress in Energy and Combustion Science, Vol. 11, 1985, pp.1-59 https://doi.org/10.1016/0360-1285(85)90012-7
  18. Tse, S. D., Zhu, D. L., Law, C. K., "Morphology and burning rates of expanding spherical flames in $H_2/O_2/$ inert mixtures up to 60 atmospheres," Proceedings of the Combustion Institute, Vol. 28, 2000, pp.1793-1800 https://doi.org/10.1016/S0082-0784(00)80581-0
  19. Law, C. K., Jomaas, G., Bechtold, J. K., "Cellular instabilities of expanding hydrogen/propane spherical flames at elevated pressures: theory and experiment," Proceedings of the Combustion Institute, Vol. 30, 2005, pp.159-167 https://doi.org/10.1016/j.proci.2004.08.266
  20. Bradley, D., Hicks, R. A., Lawes, M., "The measurement of laminar burning velocities and Markstein numbers for iso-octane.air and iso-octane-n-heptane.air mixtures at elevated temperatures and pressures in an explosion bomb," Combustion and Flame, Vol. 115, 1998, pp.126-144 https://doi.org/10.1016/S0010-2180(97)00349-0
  21. Kee, R. J., Dixon-Lewis, G., Warnatz, J., Coltrin, M. E., Miller, J. A., "A Fortran computer code package for the evaluation of gas-phase, multi-component transport properties," Albuquerque, NM: Sandia National Laboratories, 1992, [Report SAND 86-8246]
  22. Kee, R. J., Grcar, J. F., Smooke, M. D., Miller, J. A., "A Fortran program for modeling steady laminar one-dimensional premixed flames," Albuquerque, NM: Sandia National Laboratories, 1993, [Report SAND 85-8240]
  23. Addabbo, R., Bechtold, J. K., Matalon, M., "Wrinkling of spherically expanding flames," Proceedings of the Combustion Institute, Vol. 29, 2002, pp.1527-1535 https://doi.org/10.1016/S1540-7489(02)80187-0
  24. Egolfopoulos, F. N., Law, C. K., "Chain mechanisms in the overall reaction orders in laminar flame propagation," Combustion and Flame, Vol. 80, 1990, pp.7-16 https://doi.org/10.1016/0010-2180(90)90049-W
  25. Prathap, C., Ray, A., Ravi, M. R., "Investigation of nitrogen dilution effects on the laminar burning velocity and flame stability of syngas fuel at atmospheric condition," Combustion and Flame, Vol. 155, 2008, pp.145-160 https://doi.org/10.1016/j.combustflame.2008.04.005