Ultrasound-Assisted Extraction of Canola Oil Using Supercritical Fluid Process

초음파가 적용된 초임계 유체 공정을 이용한 캐놀라오일 추출

  • Hwang, Ah-Reum (Department of Chemical Engineering, The University of Suwon, Hwaseong) ;
  • Lim, Gio-Bin (Department of Chemical Engineering, The University of Suwon, Hwaseong) ;
  • Ryu, Jong-Hoon (Department of Chemical Engineering, The University of Suwon, Hwaseong)
  • Received : 2010.07.14
  • Accepted : 2010.10.25
  • Published : 2010.10.31

Abstract

The objective of this study was to investigate the effect of ultrasound on the extraction of oil from canola seeds when supercritical carbon dioxide ($SCCO_2$) was used as an extraction solvent. The ultrasound-assisted $SCCO_2$ extraction were carried out while varying such operating parameters as particle size of crushed canola seed, flow rate of $SCCO_2$, aspect ratio of the extraction vessel, and ultrasound power. The extraction rate decreased with increasing particle size of samples, showing a maximun at a $CO_2$ flow rate of 6.2 L/min. Both the extraction rate and extraction yield increased with a decrease in the aspect ratio of the extraction vessel. For the ultrasoundassisted $SCCO_2$ extraction, the extraction yield was slightly increased when the $CO_2$ flow rate was below 6 mL/min with sample A and B.

본 연구에서는 초임계 이산화탄소의 추출기술에 초음파 적용을 위한 기초 연구로서 캐놀라 씨앗의 입자의 크기, $CO_2$ 유속, 추출기의 종횡비, 초음파 파워 등의 공정변수가 캐놀라 오일의 추출 속도와 수율에 미치는 영향에 대하여 조사하였다. 초임계 이산화탄소 추출에 있어 씨앗을 더 작게 분쇄할수록 더 빠른 추출속도를 보였으며, 추출기의 종횡비가 감소할수록, $CO_2$의 유속이 증가할수록 추출 속도는 증가하였다. 그러나 초음파가 적용된 초임계 이산화탄소 추출의 경우 0.6 mm 이하로 분쇄된 씨앗의 입자 크기 분포가 가장 큰 시료 C의 경우 입자들의 뭉침 현상 증가로 인해 오히려 초음파의 적용이 추출속도와 수율을 크게 감소시켰으며, 12.0 L/min의 $CO_2$ 유속에서도 추출 속도와 수율이 감소하는 것을 확인하였다. 초음파의 적용은 초기 추출시간 50-70분 동안 추출속도 증가에 거의 영향을 미치지 않았으며, 초음파 파워 또한 추출 속도와 수율의 증가에 큰 영향을 미치지 않음을 확인할 수 있었다.

Keywords

References

  1. Przybylski, R. and T. Mag (2002) Canola/rapeseed oil. pp. 98-127. In: F. D. Gunstone (ed.). Vegetable Oils in Food Technology: Composition, Properties and Uses. Blackwell Publishing, CRC Press, USA.
  2. Hui, Y. H. (1996) Bailey's Industrial Oil and Fat Products: Volume 2. 5th ed., pp. 1-95. John Wiley & Sons, Inc., NY, USA.
  3. Jang, Y. S. (2002) Prospect and situation of quality improvement in oilseed rape. Korean J. Crop Sci. 47: 175-185.
  4. Abu-Arabi1, M. K., M. A. Allawzi, H. S. Al-Zoubi, and A. Tamimi (2000) Extraction of jojoba oil by pressing and leaching. Chem. Eng. J. 76: 61-65. https://doi.org/10.1016/S1385-8947(99)00119-9
  5. Thobani, M. and L. L. Diosady (1997) Two-phase solvent extraction of canola. JAOCS 74: 207-214. https://doi.org/10.1007/s11746-997-0125-x
  6. Jenab E., K. Rezaei, and Z. Emam-Djomeh (2006) Canola oil extracted by supercritical carbon dioxide and a commercial organic solvent. Eur. J. Lipid Sci. Technol. 108: 488-492. https://doi.org/10.1002/ejlt.200600026
  7. Salgin, U., A. Çalimi, and B. Z. Uysal (2004) Supercritical fluid extraction of jojoba oil. JAOCS 81: 293-296. https://doi.org/10.1007/s11746-004-0898-3
  8. Zaidul, I. S. M., N. A. Nik Norulaini, A. K. Mohd Omar, and R. L. Smith Jr. (2006) Supercritical carbon dioxide (SC-$CO_2$) extraction and fractionation of palm kernel oil from palm kernel as cocoa butter replacers blend. J. Food Eng. 73: 210-216. https://doi.org/10.1016/j.jfoodeng.2005.01.022
  9. Zaidul, I. S. M., N. A. Nik Norulaini, A. K. Mohd Omar, and R. L. Smith Jr. (2007) Supercritical carbon dioxide (SC-$CO_2$) extraction of palm kernel oil from palm kernel. J. Food Eng. 79: 1007-1014. https://doi.org/10.1016/j.jfoodeng.2006.03.021
  10. Kim, B. U. and U. S. Kang (1992) Supercritical fluid extraction of unsaturated fatty acids from soybean oil. J. Korean Inst. Chem. Eng. 30: 635-640.
  11. Mira, B., M. Blasco, and S. Subirate (1996) Supercritical $CO_2$ extraction of essential oils from orange peel. J. Supercrit. Fluids 9: 238-243. https://doi.org/10.1016/S0896-8446(96)90055-8
  12. De Azevedo, A. B. A., T. G. Kieckbush, A. K. Tashima, R. S. Mohamed, P. Mazzafera, and S. A. B. Vieira de Melo (2008) Extraction of green coffee oil using supercritical carbon dioxide. J. Supercrit. Fluids 44: 186-192. https://doi.org/10.1016/j.supflu.2007.11.004
  13. Cho, Y. K., H. S. Kim, J. W Kim, S. Y. Lee, W. S. Kim, J. H. Ryu, and G. B. Lim (2004) Extraction of glabridin from licorice using supercritical carbon dioxide. KSBB J. 19: 427-432.
  14. Lee, S. B., K. M. Lee, K. A. Park, and I. K. Hong (2000) Microwave assisted solvent extraction (MASE) of rice bran oil. J. Korean Ind. Eng. Chem. 11: 99-104.
  15. Kim, W. I., K. W. Chung, S. B. Lee, I. K. Hong, and K. A. Park (2001) Ultrasound energy effect on solvent extraction of amaranth seed oil. J. Korean Ind. Eng. Chem. 12: 307-311.
  16. Vilkhu, K., R. Mawson, L. Simons, and D. Bates (2008) Applications and opportunities for ultrasound assisted extraction in the food industry-A review. Innovat. Food Sci. Emerg. Tech. 9: 161-169. https://doi.org/10.1016/j.ifset.2007.04.014
  17. Kim, T. S. and K. J. Lee (2009) Extraction of genistein and formononetin from sophoraflavescens aliton using ultrasonic wave. Korean Chem. Eng. Res. 47: 258-261.
  18. Khan, M. K., M. Abert-Vian, A.-S. Fabiano-Tixier, O. Dangles, and F. Chemat (2009) Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) Peel. Food Chem. 119: 851-858.
  19. Riera, E., Y. Golas, A. Blanco, J. A. Gallego, M. Blasco, and A. Mulet (2004) Mass transfer enhancement in supercritical fluids extraction by means of power ultrasound. Ultrason. Sonochem. 11: 241-244. https://doi.org/10.1016/j.ultsonch.2004.01.019
  20. Hu, A. J., S. Zhao, H. Liang, T. Q. Qiu, and G. Chen (2007) Ultrasound assisted supercritical fluid extraction of oil and coixenolide from adlay seed. Ultrason. Sonochem. 14: 219-224. https://doi.org/10.1016/j.ultsonch.2006.03.005
  21. Balachandra, S., S. E. Kentish, R. Mawson, and M. Ashokkumar (2006) Ultrasonic enhancement of the supercritical extraction from ginger. Ultrason. Sonochem. 13: 471-479. https://doi.org/10.1016/j.ultsonch.2005.11.006
  22. Fattori, M., N. R. Bulley, and A. Meisen (1988) Carbon dioxide extraction of canola seed: Oil solubility and effect of seed treatment. JAOCS 65: 968-974. https://doi.org/10.1007/BF02544522
  23. Dunford, N. T. and F. Temelli (1995) Extraction of phospholipids from canola with supercritical carbon dioxide and ethanol. JAOCS 72: 1009-1015. https://doi.org/10.1007/BF02660713
  24. Lee, A. K. K., N. R. Bulley, and M. Fattori (1986) Modelling of supercritical carbon dioxide extraction of canola oil seed in fixed beds. JAOCS 63: 921-925. https://doi.org/10.1007/BF02540928
  25. Dunford, N. T. and F. Temelli (1997) Extraction conditions and moisture content of canola flakes as related to lipid composition of supercritical $CO_2$ extracts. J. Food Sci. 62: 155-159. https://doi.org/10.1111/j.1365-2621.1997.tb04389.x
  26. Barthet, V. J. and J. K. Daun (2001) An evaluation of supercritical fluid extraction as an analytical tool to determine fat in canola, flax, solin, and mustard. JAOCS 79: 245-251.
  27. Hwang, A.-R., I.-I. Jung, G.-B. Lim, and J.-H. Ryu (2009) Extraction of oil from canola seeds with supercritical carbon dioxide. KSBB J. 24: 367-376.