참고문헌
- Berson, A., Smith, K., and Thearing, K. (2000), Building data mining applications for CRM, New York : McGraw-Hill.
- Billsus, D. and Pazzani, M. J. (1998), Learning collaborative information filters, Proceedings on the Fifteenth International Conference on Machine Learning, 46-54, Madison, WI.
- Claypool, M., Le, P., Wased, M., and Brown, D. (2001), Implicit interest indicators. Proceedings on the International Conference on Intelligent User Interfaces, 33-40, Santa Fe, New Mexico.
- Goldberg, K., Roeder, T., Gupta, D., and Perkins, C. (2001), Eigentaste : A Constant Time Collaborative Filtering Algorithm. Information Retrieval Journal, 4(2), 133-151. https://doi.org/10.1023/A:1011419012209
- Hayes, C., Cunningham, P., and Smyth, B. (2001), A case-based reasoning view of automated collaborative filtering, Proceedingsof the Fourth International Conference on Case-Based Reasoning, 243-248, Vancouver.
- Hill, W., Stead, L., Rosenstein, M., and Furnas, G. (1995), Recommending and evaluating choices in a virtual community of use, Proceedings of the 1995 ACM Conference on Factors in Computing Systems, 194-201, New York.
- Kelly, D. and Belkin, N. J. (2001), Reading time, scrolling, and interaction : exploring implicit sources of user preferences for relevance feedback, Proceedings of the Twenty Fourth Annual ACM SIGIR Conference on Research and Development in Information Retrieval, 408-409, New Orleans, LA.
- Kim, D. and Yum, B.-J. (2005), Collaborative filtering based on iterative principal component analysis. Expert Systems with Applications, 28(4), 823-830. https://doi.org/10.1016/j.eswa.2004.12.037
- Kim, Y. S., Yum, B.-J., Song, J., and Kim, S.-M. (2005), Development of a recommender system based on navigational and behavioral patterns of customers in e-commerce sites, Expert Systems with Applications, 28(2), 381-393. https://doi.org/10.1016/j.eswa.2004.10.017
- Lawrence, R. D., Almasi, G. S., Korlyar, V., Viveros, M. S., and Duri, S. S. (2001), Personalization of supermarket product recommendations, Data Mining and Knowledge Discovery, 5(1), 11-32. https://doi.org/10.1023/A:1009835726774
- Lee, J., Podlaeck, M., Schonberg, E., and Hoch, R. (2001), Visualization and analysis of click stream data of online stores for understanding web merchandising, Data Mining and Knowledge Discovery, 5(1/2), 59-84. https://doi.org/10.1023/A:1009843912662
- Lee, J., Podlaeck, M., Schonberg, E. m Hoch, R., and Gomory, S. (2000), Understanding merchandising effectiveness of online stores, Electronic Markets, 10(1), 1-9. https://doi.org/10.1080/10196780050033917
- Montgomery, D. C. (2000), Design and analysis of experiments, New York : Wiley.
- Nichols, D. M. (1997), Implicit rating and filtering, Proceedings of the Fifth Workshop on Filtering and Collaborative Filtering, 31-36, Budapest.
- Rafter, R. and Smyth, B. (2001), Passive profiling from server logs in an online recruitment environment, IJCAI's Workshop on Intelligent Techniques for Web Personalisation, 35-41, Seattle, WA.
- Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedle, J. (1994), Grouplens : An open architecture for collaborative filtering of netnews, Proceedings of the ACM 1994 Conference on Computer Supported Cooperative Work, 175-186, Chapel Hill.
- Sarwar, B., Karypis, G., Konstan J. A., and Riedl, J. (2000a), Analysis of recommendation algorithms for e-commerce, Proceedings of ACM E-Commerce 2000 Conference, 158-167, Minneapolis, MN.
- Sarwar, B. M., Karypis, G., Konstan, J. A., and Riedl, J. (2000b), Application of Dimensionality Reduction In Recommender System- A Case Study, Proceedings of ACM WebKDD Workshop, Boston, MA.
- Shardanand, U. and Maes, P. (1995), Social information filtering : algorithms for automating word of mouth, Proceedings of Conference on Human Factors in Computing Systems, 210-217, Denver, CO.
- Yuan, S. and Chang, W. (2001), Mixed-initiative synthesized learning approach for web-based CRM, Expert Systems with Applications, 20(2), 187-200. https://doi.org/10.1016/S0957-4174(00)00058-0