DOI QR코드

DOI QR Code

DISCRETE MULTIPLE HILBERT TYPE INEQUALITY WITH NON-HOMOGENEOUS KERNEL

  • Ban, Biserka Drascic (FACULTY OF MARITIME STUDIES UNIVERSITY OF RIJEKA) ;
  • Pecaric, Josip (FACULTY OF TEXTILE TECHNOLOGY UNIVERSITY OF ZAGREB) ;
  • Peric, Ivan (FACULTY OF FOOD TECHNOLOGY AND BIOTECHNOLOGY UNIVERSITY OF ZAGREB) ;
  • Pogany, Tibor (FACULTY OF MARITIME STUDIES UNIVERSITY OF RIJEKA)
  • 발행 : 2010.05.01

초록

Multiple discrete Hilbert type inequalities are established in the case of non-homogeneous kernel function by means of Laplace integral representation of associated Dirichlet series. Using newly derived integral expressions for the Mordell-Tornheim Zeta function a set of subsequent special cases, interesting by themselves, are obtained as corollaries of the main inequality.

키워드

참고문헌

  1. J. M. Borwein, Hilbert’s inequality and Witten’s zeta-function, Amer. Math. Monthly 115 (2008), no. 2, 125-137. https://doi.org/10.1080/00029890.2008.11920505
  2. O. Espinosa and V. H. Moll, The evaluation of Tornheim double sums. I, J. Number Theory 116 (2006), no. 1, 200-229. https://doi.org/10.1016/j.jnt.2005.04.008
  3. G. H. Hardy, J. E. Littlewood, and Gy. Polya, Inequalities, Cambridge University Press, Cambridge, 1934.
  4. J. L. W. V. Jensen, Sur les fonctions convexes et les inegalites entre les valeurs moyennes, Acta Math. 30 (1906), no. 1, 175-193. https://doi.org/10.1007/BF02418571
  5. K. Matsumoto, On Mordell-Tornheim and other multiple zeta-functions, Proceedings of the Session in analytic number theory and Diophantine equations (Bonn, January–June 2002.) D.R. Heath-Brown and B. Z. Moroz (eds.), Bonner Mathematische Schriften Nr. 360 (Bonn, 2003), no. 25, 17pp.
  6. D. S. Mitrinovic, Analiticke nejednakosti, Gradevinska knjiga, Beograd, 1970.
  7. T. K. Pogany, Hilbert’s double series theorem extended to the case of non–homogeneous kernels, J. Math. Anal. Appl. 342 (2008), no. 2, 1485-1489. https://doi.org/10.1016/j.jmaa.2007.12.051
  8. T. K. Pogany, H. M. Srivastava, and Z. Tomovski, Some families of Mathieu a-series and alternating Mathieu a-series, Appl. Math. Comput. 173 (2006) 69-108. https://doi.org/10.1016/j.amc.2005.02.044
  9. M. V. Subbarao and R. Sitaramachandra Rao, On some infinite series of L. J. Mordell and their analogues, Pacific J. Math. 119 (1985), no. 1, 245-255. https://doi.org/10.2140/pjm.1985.119.245
  10. L. Tornheim, Harmonic double series, Amer. J. Math. 72 (1950), 303-314. https://doi.org/10.2307/2372034
  11. H. Tsumura, On certain polylogarithmic double series, Arch. Math. (Basel) 88 (2007), no. 1, 42-51. https://doi.org/10.1007/s00013-006-1809-4
  12. H. Tsumura, On functional relations between the Mordell-Tornheim double zeta functions and the Riemann zeta function, Math. Proc. Cambridge Philos. Soc. 142 (2007), no. 3, 395-405. https://doi.org/10.1017/S0305004107000059

피인용 문헌

  1. Recent Developments of Hilbert-Type Discrete and Integral Inequalities with Applications vol.2012, 2012, https://doi.org/10.1155/2012/871845