Efficient Asymmetric Synthesis of Chiral Monomer of Epoxyquinols and (-)-Phyllostine

Hee II Chae, Geum-Sook Hwang,[†] Ming Yu Jin, and Do Hyun Ryu^{*}

Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea. *E-mail: dhryu@skku.edu [†]Graduate School of Analytical Science and Technology, Chungnam National University and Korea Basic Science Institute, Seoul 136-701, Korea Received December 23, 2009, Accepted January 27, 2010

Key Words: Diels-Alder reaction, Asymmetric catalyst, Epoxyquinol, Epoxidation, Angiogenesis

Angiogenesis, the formation and growth of new blood capillaries from preexisting vessels, is a vital function for tumor growth and metastasis.¹ Therefore, the inhibition of angiogenesis is believed to be an important approach for developing new drugs in cancer chemotheraphy. Indeed, several angiogenesis inhibitors from natural products, such as endostatin² and TNP-470,³ are undergoing clinical trials.⁴ In addition to the application in oncology, anti-angiogenic drugs are in demand for various diseases that are associated with pathological angiogenesis, including rheumatoid arthritis and diabetic retinopathy.⁵

In 2002, Osada and co-workers reported the isolation and structual elucidation of two novel angiogenesis inhibitors, epoxyquinols A^{6a} and B^{6b} from fungal metabolites. These compounds have been known to inhibit the VEGF (vascular endothelial growth factor)-induced migration. Recent studies showed **2** is a novel multiple kinase inhibitor, suggesting that **2** would be a good lead compound for the development of potent antiangiogenic and antitumor drugs.⁷

Since Hayashi and co-workers first proved that epoxiquinols **1** and **2** are synthesized from monomeric pentaketide precursor **3** by oxidative dimerization, ^{8a} the efficient enantioselective synthesis of **3** is an essential strategy to obtain large amount of epoxyquinols A and B. Hayashi group reported two different approaches to **3** by using diastereoselective Diels-Alder reaction^{8a} and enzymatic resolution. ^{8b} Porco, Mehta and Kuwahara groups achieved the enantioselective synthesis of **3** through an asymmetric epoxidation, ^{8c} an enzymatic desymmetrization^{8d} and Evans asymmetric aldol reaction, ^{8e} respectively. However, there has been no report for the synthetic routes to **3** using catalytic enantioselective manner. Herein, we describe an efficient approach to the monomer **3** *via* (+)-phyllostine **4** through catalytic asymmetric Diels-Alder reaction and the short synthesis of natural product (-)-phyllostine.

Since it was envisaged that stereoselective reduction of 4 would provide chiral alcohol of 3, our synthesis began with the enantioselective synthesis of (+)-phyllostine, an enantiomer of

Figure 1. Structures of epoxyquinols A, B and their monomer 3.

natural metabolite (-)-phyllostine (Scheme 1). (-)-Phyllostine was isolated from the culture filtrate of *Phyllosticta sp.*, a pathogenic fungus of red clover, and is known as a phytotoxic compound.⁹

We considered that chiral Diels-Alder adduct 5 could be a good starting material for the synthesis of 4. Initially, the enantioselective Diels-Alder reactions of cyclopentadiene with 1,4-quinone monoketal 7, which is easily prepared from *p*-methoxyphenol,¹⁰ were attempted. The reaction was carried out at -78 °C by stirring 1,4-quinone monoketal 7 and cyclopentadiene in the presence of (S)-cationic chiral oxazaborolidium catalysts 6^{11} (20 mol %) in CH₂Cl₂ under nitrogen atmosphere. However, the endo-cycloadduct 9 was generated in 80% yield with 78% ee.¹² On the other hand, when the dienophile was changed to 2-iodo-1,4-quinone monoketal 8, the chiral endo-Diels-Alder adduct 10 was afforded in 94% yield with excellent 97% ee.^{11d,f} The reason for this is that the iodine substituent blocks catalyst coordination to carbonyl lone pair which is syn to it and also deactivates the C=C subunit to which it is attached (Fig. 2).^{11c} Enantiomerically pure **10** was obtained simply by one recrystallization from CH₂Cl₂-hexanes and the absolute structure of 10 was confirmed by X-ray crystallographic studies (Fig. 2).¹³ The absolute stereochemical course of enantioselective Diels-Alder reaction can be explained in terms of a favored reaction channel via the pre-transition-state assembly, shown in Fig. 2.11b,d

With the enantiomerically pure 10 in hand, the synthesis of

Scheme 1. Retrosynthetic analysis of chiral monomer 3

Scheme 2. Synthesis of endo-Diels-Alder adducts 9 and 10

Figure 2. Crystal structure of 10 and pre-transition-state assembly for the Diels-Alder reaction of 8 in the presence of catalyst 6.

Scheme 3. Reagents and conditions (a) *n*-Bu₃SnH, benzene, 80 $^{\circ}$ C (88%); (b) 30 wt % H₂O₂, DBU, CH₃CN, 0 $^{\circ}$ C (92%); (c) 37 wt % formaldehyde, DBU, THF, 0 $^{\circ}$ C to 25 $^{\circ}$ C (98%); (d) 1 N H₂SO₄, Acetone-THF(1:1), 60 $^{\circ}$ C (98%); (e) Ph₂O, 230 $^{\circ}$ C (98%).

(+)-phyllostine was achieved over five steps. Reaction of 10 with tributyltin hydride provided 9 in 88% yield. Base-mediated epoxidation of enone 9 was attempted in various conditions. It was found that the epoxidation with hydrogenperoxide and DBU at 0 °C occurred from convex direction to provide only the exo-epoxide 11 in 92% yield. Stereoselective hydroxymethylation afforded the alcohol 12 in 98% yield. Deprotection of ketal 12 under acidic condition followed by retro-Diels-Alder reaction of 13 gave (+)-phyllostine in 96% two steps yield. Spectral data for synthetic one were in accord with those of the natural isolate, (-)-phyllostine except the sign of optical rotation. Comparison of optical rotation $\{[\alpha]_D^{22} = +117 (c = 1.00,$ EtOH)} determined the absolute stereochemistry to be as shown in (+)-4. Since (R)-cationic oxazaborolidium catalyst ent-6 is readily available, natural (-)-phyllostine was synthesized by using the same route with an overall yield of 72% in only six steps and its optical rotation { $[\alpha]_D^{22} = -116$ (c = 1.00, EtOH)} corresponds well with the values of $[\alpha]_D^{28} = -120$ (c = 0.28, EtOH) and $[\alpha]_D^{24} = -108$ (c = 1.61, EtOH) found in the literature.96,

Scheme 4. Reagents and conditions (a) DIBAL-H, THF, -78 °C (70%); (b) 2,2-dimethoxypropane, PPTS, CH₂Cl₂, 25 °C (87%); (c) I₂, PhI (OCOCF₃)₂, pyridine, 2,6-di-*tert*-butyl-4-methylphenol, CH₂Cl₂, 25 °C (78%); (d) (*E*)-tributyl-1-propenyl-stannane, Pd₂dba₃, PhCH₃, 110 °C; (e) 1 N H₂SO₄, Acetone-THF (1:1), 25 °C (76% for two steps).

Regioselective and stereoselective reduction of **4** using Kiyooka's conditions¹⁴ (2 eq. DIBAL-H, THF, -78 °C) was directed by the primary hydroxyl group and epoxide oxygen to furnish **15** in 70% yield through the intermediacy of the aluminium complex **14**. The diol in **15** was protected as the acetonide **16** in 87% yield. The α -iodination of **16** afforded iodoenone **17** in 78% yield. ^{8b} Finally, Stille cross-coupling^{8c} with (*E*)-1-propenyl stannane followed by deprotection of the acetonide under acidic conditions gave chiral monomer **3** of epoxyquinols A and B in 76% two steps yield. The identity of our synthetic material was fully established through the comparison of the ¹H and ¹³C NMR spectra. The specific rotation of **3** {[α]_D²¹ = +282 (*c* = 0.10, MeOH)} is in perfect agreement with the literature value of [α]_D²⁵ = +285 (*c* = 0.41, MeOH).^{8b}

In summary, we have accomplished an efficient enantioselective synthesis of chiral monomer **3** of epoxyquinols A and B *via* (+)-phyllostine in 26% overall yield by an 11-step sequence through a catalytic asymmetric Diels-Alder reaction. Also, this approach has resulted in the short synthesis of natural product (-)-phyllostine with an overall yield of 72% in only six steps.

Experimental

Unless stated otherwise, reactions were carried out under a dry argon atmosphere in vacuum-flame dried glassware. Thinlayer chromatography (TLC) was performed on Merck silica gel 60 F254. Flash chromatography was performed using E. Merck silica gel ($40 \sim 60 \mu m$ particle size). ¹H and ¹³C NMR spectra were recorded on a Varian at 300 and 75 MHz. Infrared spectra were recorded on a Bruker Vertex 70. HRMS were recorded on JEOL JMS-SX102A mass spectrometer with EI or FAB resource. Analytical high performance liquid chromatography (HPLC) was performed on FUTECS NS 4000 at 256 nm using the indicated chiral column ($4.6 \text{ mm} \times 25 \text{ cm}$). Optical rotations were determined on a Perkin-Elmer Polarimeter Model 343 plus at 589 nm. Commercial grade reagents and solvents were used without further purification.

(1'*RS*,4'*SR*,4a'*RS*,8a'*SR*)-1',4',4a',8a'-Tetrahydrospiro-{1,3 dioxolane-2,5'(8'*H*)-[1',4']methanonaphtho[2,3-*b*]oxiren}-7'-

Notes

one (11). To a solution of 9 (0.2875 g, 1.32 mmol) in CH₃CN (13 mL) was added 30 wt % H₂O₂ (1.35 mL, 13.2 mmol) and DBU (0.986 mL, 6.6 mmol) at 0 °C, and the mixture was stirred for 1 h at that same temperature. The reaction mixture was quenched with saturated NaHCO₃ (aq). Organic materials were extracted with CH_2Cl_2 (3 × 20 mL), and the combined organic phases were washed with brine and dried over Na₂SO₄. The organic phase was concentrated in vacuo, and the residue was purified by silica gel column chromatography (ethyl acetate : hexane, 1 : 3) to afford 0.2839 g (92%) of 11: TLC : $R_f = 0.38$ (ethyl acetate : hexane, 1:3); mp $123 \sim 125$ °C; IR (NaCl) : 2983, 2901, 2361, 2341, 1709, 1148, 1075, 1018, 866, 746, 613; ¹H NMR (300 MHz, CDCl₃) δ 6.15 (dd, J = 3.0, 5.4 Hz, 1 H, =CH), 6.03 (dd, J=3.0, 5.7 Hz, 1 H, =CH), 4.26-3.76 (m, 4 H, O-CH₂-CH₂-O), 3.33-3.27 (m, 2 H, CH-CH), 3.18 (dd, J=3.6, 11.4 Hz, 1 H, CH), 3.11 (bs, 1 H, CH), 3.04 (dd, J = 3.0, 11.4 Hz, 1 H, CH), 2.95 (bs, 1 H, CH), 1.42 (dt, J = 4.8, 8.4 Hz, 1 H, CHH), 1.24 (d, J = 8.4 Hz, 1 H, CHH); ¹³C NMR (75 MHz, CDCl₃) § 206.3, 135.6, 133.7, 107.9, 65.5, 64.7, 58.1, 55.3, 49.5, 48.5, 47.0, 43.2, 42.5; HRMS (EI) exact mass calcd. for $C_{13}H_{14}O_{4}$; $m/z 235.0965 ([M + H]^+)$, found: $m/z 235.0970 ([M + H]^+)$ $([H]^{+}); [\alpha]_{D}^{22} = +28 (c 1.0, CHCl_3).$

(1'RS,4'SR,4a'RS,8a'SR)-8a'-(Hydroxymethyl)-1',4',4a',8a'tetrahydrospiro-{1,3 dioxolane-2,5'(8'H)-[1',4']methanonaphtho[2,3-b]oxiren}-8'-one (12). To a solution of 11 (0.4156 g, 1.77 mmol) in THF (17 mL) was added DBU (0.292 mL, 1.95 mmol) and 37 wt % formaldehyde (1.32 mL, 17.7 mmol) at 0 °C, and the mixture was stirred for 1 h at that same temperature. The reaction mixture was quenched with saturated NaHCO₃ (aq). Organic materials were extracted with CH_2Cl_2 (3 × 25 mL), and the combined organic phases were washed with brine and dried over Na₂SO₄. The organic phase was concentrated in vacuo, and the residue was purified by silica gel column chromatography (ethyl acetate : hexane, 1:1) to afford 0.4595 g (98%) of **12**: TLC : $R_f = 0.31$ (ethyl acetate : hexane , 1 : 1); IR (NaCl): 3500, 3461, 2979, 2887, 2360, 1701, 1158, 1000, 877, 746, 606; ¹H NMR (300 MHz, CDCl₃) δ 6.14(dd, J = 2.7, 5.4 Hz, 1 H, =CH), 6.05 (dd, J = 3.0, 5.1 Hz, 1 H, =CH), 4.29 (dd, J = 7.2, 11.4 Hz, 1 H, OCH), 4.24-3.85 (m, 4 H, O-CH₂-CH₂-O), 3.66 (dd, J = 5.4, 11.4 Hz, 1 H, OCH), 3.34 (m, 2 H, CH-CH), 3.14 (bs, 1 H, CH), 2.91 (bs, 1 HCH), 2.51 (d, J = 3.6 Hz, 1 H, CH), 1.92 (t, J = 6.3 Hz, 1 H, OH), 1.39 (m, 2 H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 206.7, 137.8, 134.4, 107.5, 69.4, 66.0, 64.8, 61.3, 58.8, 55.6, 52.4, 46.1, 45.0, 43.9; HRMS (EI) exact mass calcd. for C₁₇H₂₆O₂Si: m/z 307.1724 ([M + H]⁺), found: m/z $307.1729 ([M + H]^{+})$. HRMS (EI) exact mass calcd. for C₁₄ $H_{16}O_5$: $m/z 265.1071 ([M + H]^+)$, found: $m/z 265.1076 ([M + H]^+)$ H]⁺); $[\alpha]_D^{22} = -66$ (c 1.0, CHCl₃).

(1*RS*,4*SR*,4*aRS*,8*aSR*)-8*a*-(Hydroxymethyl)-1,4,4*a*,8*a*-tetra hydro[1,4]methanonaphtho[2,3-*b*]oxiren}-5,8-dione (13). To a solution of 12 (0.0858 g, 0.32 mmol) in Acetone-THF (1 : 1, 3 mL) was added 1 N H₂SO₄ (1.5 mL) at rt, and the mixture was stirred for 6 h at that same temperature. The reaction mixture was quenched with 10% Na₂CO₃ (aq). Organic materials were extracted with CH₂Cl₂ (3 × 5 mL), and the combined organic phases were washed with brine and dried over Na₂SO₄. The organic phase was concentrated in vacuo, and the residue was purified by silica gel column chromatography (ethyl acetate : hexane, 1 : 1) to afford 0.07 g (98%) of **12**: TLC : $R_f = 0.36$ (ethyl acetate : hexane, 1 : 1); mp 146 ~ 148 °C; IR (NaCl): 2983, 2925, 2360, 2338, 1707, 1290, 1039, 991, 846, 719, 628; ¹H NMR (300 MHz, CDCl₃) δ 6.07 (m ,2 H, CH=CH), 4.36 (d, J = 11.4 Hz, 1 H, OCH), 3.82 (d, J = 11.4 Hz, 1 H, OCH), 3.33 (bs, 2 H, CH-CH), 2.84 (d, J = 3.6 Hz, 1 H, CH), 1.91 (bs, 1 H, OH), 1.54-1.42 (m, 2H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 204.7, 203.7, 138.2, 138.1, 68.5, 61.1, 58.9, 57.9, 53.4, 46.1, 44.2, 43.1; HRMS (EI) exact mass calcd. for C₁₂H₁₂O₄: m/z 221.0808 ([M + H]⁺), found: m/z 221.0814 ([M + H]⁺); [α]_D²¹ = -97 (c 1.0, THF).

Acknowledgements. This work was supported by grants NRF-20090094024 (Priority Research Centers Program), NRF-20080058667 (Basic Science Research Program), NRF-2009 0076108 (Basic Science Research Program) and KRF-2008-331-C00160 (Basic Science Research Program). We thank Dr Hyun Sue Huh for X-ray analyses.

References and Notes

- 1. Carmeliet, P. Angiogenesis in Health and Disease; Nat. Med. 2003, 9, 653.
- Soker, S.; Takashima, S.; Miao, H. Q.; Neufeld, G.; Klagsbrun, M. Cell 1998, 92, 735.
- 3. Kerbel, R. S. Bioessays 1991, 13, 31.
- 4. Gasparini, G. Drugs 1999, 58, 17.
- 5. Ryan, C. J.; Wilding, G. Drugs & Aging 2000, 17, 249.
- 6. (a) Hiroshi, K.; Onose, R.; Koshino, H.; Yoshida, A.; Kobayashi, K.; Kageyama, S.-I.; Osada, H. *J. Am. Chem. Soc.* 2002, *124*, 3496.
 (b) Kakeya, H.; Onose, R.; Yoshida, A.; Koshino, H.; Osada, H. *J. Antibiot.* 2002, *55*, 829.
- (a) Kamiyama, H.; Hideaki, K.; Takeo, U.; Kiyohiro, N.; Mitsuru, S.; Yujiro, H.; Hiroyuki, O. *Oncology Research* 2008, *17*, 11. (b) Kamiyama, H.; Usui, T.; Uramoto, M.; Takagi, H.; Shoji, M.; Hayashi, Y.; Kakeya, H.; Osada, H. *J. Antibiot.* 2008, *61*, 94. (c) Kamiyama, H.; Usui, T.; Sakurai, H.; Shoji, M.; Hayashi, Y.; Kakeya, H.; Osada, H. *Biosci. Biotechnol. Biochem.* 2008, *72*, 1894.
- (a) Shoji, M.; Yamaguchi, J.; Kakeya, H.; Osada, H.; Hayashi, Y. *Angew. Chem. Int. Ed.* **2002**, *41*, 3192. (b) Shoji, M.; Imai, H.; Mukaida, M.; Sakai, K.; Kakeya, H.; Osada, H.; Hayashi, Y. *J. Org. Chem.* **2005**, *70*, 79. (c) Li, C.; Bardhan, S.; Pace, E. A.; Liang, M.-C.; Gilmore, T. D.; Porco. J. A., Jr. *Org. Lett.* **2002**, *4*, 3267. (d) Mehta, G.; Islam, K. *Tetrahedron Lett.* **2004**, *45*, 3611. (e) Kuwahara, S.; Imada, S. *Tetrahedron Lett.* **2005**, *46*, 547.
- (a) Sakamura, S.; Ito, J.; Sakai, R. Agr. Biol. Chem. 1970, 34, 153. (b) Sakamura, S.; Ito, J.; Sakai, R. Agr. Biol. Chem. 1971, 35, 105. (c) Ichihara, A.; Oda, K.; Sakamura, S.; Tetrahedron Lett. 1972, 50, 5105. (d) Ichihara, A.; Kimura, R.; Oda, K.; Sakamura, S. Tetrahedron Lett. 1976, 51, 4741. (e) Okamura, H.; Shimizu, H.; Yamashita, N.; Iwagawa, T.; Nakatani, M. Tetrahedron 2003, 59, 10159. (f) Mehta, G.; Islam, K. Tetrahedron Lett. 2004, 45, 7683. (g) Yoshida, N.; Konno, H.; Kamikubo, T.; Takahashi, M.; Ogasawara, K. Tetrahedron 1999, 10, 3849.
- Bayón, P.; Marjanet, G.; Toribio, G.; Alibés, R.; March, P. D.; Figueredo, M.; Font, J. J. Org. Chem. 2008, 73, 3486.
- (a) The Mikami catalyst has also been found to afford good results with 1,4-quinone monoketals as substrates. see: Breuning, M.; Corey, E. J. Org. Lett. 2001, 3, 1559. (b) Ryu, D. H.; Zhou, G.; Corey, E. J. J. Am. Chem. Soc. 2004, 126, 4800. (c) Ryu, D. H.; Corey, E. J. J. Am. Chem. Soc. 2003, 125, 6388. (d) Ryu, D. H.; Lee, T. W. Corey, E. J. J. Am. Chem. Soc. 2002, 124, 9992. (e) Ryu, D. H.; Kim, K. H.; Sim, J. Y.; Corey, E. J. Tetrahedron Lett. 2007, 48, 5735. (f) Lee, M. Y.; Kim, K. H.; Jiang, S.; Jung, Y. H.;

Sim, J. Y.; Hwang, G.-S.; Ryu, D. H. *Tetrahedron Lett.* 2008, *49*, 1965. (g) Sim, J. Y.; Hwang, G.-S.; Kim, K. H.; Ko, E. M.; Ryu, D. H. *Chem. Commun.* 2007, 5064. (h) Corey, E. J. *Angew. Chem. Int. Ed.* 2009, *48*, 2100. (i) Senapati, B. K.; Hwang, G.-S.; Lee, S.; Ryu, D. H. *Angew. Chem. Int. Ed.* 2009, *48*, 4398. (j) Gao, L.; Hwang, G.-S.; Lee, M. Y.; Ryu, D. H. *Chem. Commun.* 2009, 5460. (k) Kim, J. Y.; Hwang, G.-S.; Lee, S. M.; Han, J. H.; Kim, E. Y.; Ryu, D. H. *Bull. Korean Chem. Soc.* 2009, *30*, 289. (l) Jin, M. Y.; Hwang, G.-S.; Chae, H. I.; Jung, S. H.; Ryu, D. H. *Bull. Korean Chem. Soc.* 2010, *31*, 727.

- Triflic acid activated catalyst 6 provided the Diels-Alder adduct
 9 with better enantioselectivity compared to triflimide or aluminium bromide activated catalyst.
- 13. Crystal data for **10**: $C_{13}H_{13}IO_3$, $\dot{M} = 344.15$. Orthorhombic, space group $P2_{12}L_{12}$, $\lambda = 0.71073$ Å, a = 5.8347(11), b = 14.046(3), c =

15.419(3) Å, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, V = 1263.7(4) Å³, Z = 4, $D_c = 1.809$ Mg/m⁻³, F(000) = 672, T = 296 (2) K, $\mu = 2.528$ mm⁻¹, size: $0.28 \times 0.18 \times 0.10$ mm³. θ range = $3.01 \sim 28.38^{\circ}$, Reflections collected: 20039, Independent reflections: 3105 [R(int) = 0.0314], Final R indices [I > 2sigma(I)]: $R_1 = 0.0271$, $wR_2 = 0.0651$, Rindices (all data): $R_1 = 0.0341$, $wR_2 = 0.0694$, Refinement method: Full-matrix least-squares on F^2 . Crystallographic data for the structure reported here have been deposited with the Cambridge Crystallographic Data Centre (Deposition No. CCDC-763142). That data can be obtained free of charge *via* http://www.ccdc.cam.ac.uk/ perl/catreq.cgi (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033; e-mail: deposit@ccdc.cam. ac.uk).

14. Kiyooka, S.-I.; Kuroda, H.; Shimasaki, Y. *Tetrahedron Lett.* **1986**, *27*, 3009.