Efficient Asymmetric Synthesis of Chiral Monomer of Epoxyquinols and (-)-Phyllostine

Hee II Chae, Geum-Sook Hwang, ${ }^{\dagger}$ Ming Yu Jin, and Do Hyun Ryu*
Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea. *E-mail: dhryu@skku.edu
${ }^{\dagger}$ Graduate School of Analytical Science and Technology,
Chungnam National University and Korea Basic Science Institute, Seoul 136-701, Korea
Received December 23, 2009, Accepted January 27, 2010

Key Words: Diels-Alder reaction, Asymmetric catalyst, Epoxyquinol, Epoxidation, Angiogenesis

Angiogenesis, the formation and growth of new blood capillaries from preexisting vessels, is a vital function for tumor growth and metastasis. ${ }^{1}$ Therefore, the inhibition of angiogenesis is believed to be an important approach for developing new drugs in cancer chemotheraphy. Indeed, several angiogenesis inhibitors from natural products, such as endostatin ${ }^{2}$ and TNP-470, ${ }^{3}$ are undergoing clinical trials. ${ }^{4}$ In addition to the application in oncology, anti-angiogenic drugs are in demand for various diseases that are associated with pathological angiogenesis, including rheumatoid arthritis and diabetic retinopathy. ${ }^{5}$

In 2002, Osada and co-workers reported the isolation and structual elucidation of two novel angiogenesis inhibitors, epoxyquinols $\mathrm{A}^{6 \mathrm{a}}$ and $\mathrm{B}^{6 \mathrm{~b}}$ from fungal metabolites. These compounds have been known to inhibit the VEGF (vascular endothelial growth factor)-induced migration. Recent studies showed $\mathbf{2}$ is a novel multiple kinase inhibitor, suggesting that $\mathbf{2}$ would be a good lead compound for the development of potent antiangiogenic and antitumor drugs. ${ }^{7}$

Since Hayashi and co-workers first proved that epoxiquinols $\mathbf{1}$ and $\mathbf{2}$ are synthesized from monomeric pentaketide precursor 3 by oxidative dimerization, ${ }^{8 a}$ the efficient enantioselective synthesis of $\mathbf{3}$ is an essential strategy to obtain large amount of epoxyquinols A and B. Hayashi group reported two different approaches to $\mathbf{3}$ by using diastereoselective Diels-Alder reaction ${ }^{8 a}$ and enzymatic resolution. ${ }^{8 b}$ Porco, Mehta and Kuwahara groups achieved the enantioselective synthesis of $\mathbf{3}$ through an asymmetric epoxidation, ${ }^{8 \mathrm{c}}$ an enzymatic desymmetrization ${ }^{8 \mathrm{~d}}$ and Evans asymmetric aldol reaction, ${ }^{8 e}$ respectively. However, there has been no report for the synthetic routes to 3 using catalytic enantioselective manner. Herein, we describe an efficient approach to the monomer $\mathbf{3}$ via $(+)$-phyllostine 4 through catalytic asymmetric Diels-Alder reaction and the short synthesis of natural product (-)-phyllostine.
Since it was envisaged that stereoselective reduction of 4 would provide chiral alcohol of $\mathbf{3}$, our synthesis began with the enantioselective synthesis of (+)-phyllostine, an enantiomer of

epoxyquinol B(2)

3
natural metabolite (-)-phyllostine (Scheme 1). (-)-Phyllostine was isolated from the culture filtrate of Phyllosticta sp., a pathogenic fungus of red clover, and is known as a phytotoxic compound. ${ }^{9}$

We considered that chiral Diels-Alder adduct 5 could be a good starting material for the synthesis of 4. Initially, the enantioselective Diels-Alder reactions of cyclopentadiene with 1,4 -quinone monoketal 7 , which is easily prepared from p-methoxyphenol, ${ }^{10}$ were attempted. The reaction was carried out at $-78^{\circ} \mathrm{C}$ by stirring 1,4-quinone monoketal 7 and cyclopentadiene in the presence of (S)-cationic chiral oxazaborolidium catalysts $\mathbf{6}^{11}$ ($20 \mathrm{~mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under nitrogen atmosphere. However, the endo-cycloadduct $\mathbf{9}$ was generated in 80% yield with 78% ee. ${ }^{12}$ On the other hand, when the dienophile was changed to 2 -iodo-1,4-quinone monoketal 8, the chiral endo-Diels-Alder adduct 10 was afforded in 94% yield with excellent 97% ee. ${ }^{11 d, f}$ The reason for this is that the iodine substituent blocks catalyst coordination to carbonyl lone pair which is syn to it and also deactivates the $\mathrm{C}=\mathrm{C}$ subunit to which it is attached (Fig. 2). ${ }^{11 \mathrm{c}}$ Enantiomerically pure 10 was obtained simply by one recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexanes and the absolute structure of $\mathbf{1 0}$ was confirmed by X-ray crystallographic studies (Fig. 2). ${ }^{13}$ The absolute stereochemical course of enantioselective Diels-Alder reaction can be explained in terms of a favored reaction channel via the pre-transition-state assembly, shown in Fig. 2. ${ }^{11 \mathrm{~b}, \mathrm{~d}}$

With the enantiomerically pure $\mathbf{1 0}$ in hand, the synthesis of

Scheme 1. Retrosynthetic analysis of chiral monomer 3

Scheme 2. Synthesis of endo-Diels-Alder adducts $\mathbf{9}$ and $\mathbf{1 0}$

Figure 2. Crystal structure of $\mathbf{1 0}$ and pre-transition-state assembly for the Diels-Alder reaction of $\mathbf{8}$ in the presence of catalyst $\mathbf{6}$.

Scheme 3. Reagents and conditions (a) n - $\mathrm{Bu}_{3} \mathrm{SnH}$, benzene, $80^{\circ} \mathrm{C}$ (88%); (b) $30 \mathrm{wt} \% \mathrm{H}_{2} \mathrm{O}_{2}$, DBU, $\mathrm{CH}_{3} \mathrm{CN}, 0{ }^{\circ} \mathrm{C}$ (92%); (c) $37 \mathrm{wt} \%$ formaldehyde, DBU, THF, $0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}(98 \%)$; (d) $1 \mathrm{NH}_{2} \mathrm{SO}_{4}$, Ace-tone-THF (1:1), $60^{\circ} \mathrm{C}(98 \%)$; (e) $\mathrm{Ph}_{2} \mathrm{O}, 230^{\circ} \mathrm{C}(98 \%)$.
$(+)$-phyllostine was achieved over five steps. Reaction of $\mathbf{1 0}$ with tributyltin hydride provided $\mathbf{9}$ in 88% yield. Base-mediated epoxidation of enone 9 was attempted in various conditions. It was found that the epoxidation with hydrogenperoxide and DBU at $0^{\circ} \mathrm{C}$ occurred from convex direction to provide only the exo-epoxide $\mathbf{1 1}$ in 92% yield. Stereoselective hydroxymethylation afforded the alcohol $\mathbf{1 2}$ in 98% yield. Deprotection of ketal $\mathbf{1 2}$ under acidic condition followed by retro-Diels-Alder reaction of 13 gave (+)-phyllostine in 96% two steps yield. Spectral data for synthetic one were in accord with those of the natural isolate, (-)-phyllostine except the sign of optical rotation. Comparison of optical rotation $\left\{[\alpha]_{D}^{22}=+117(c=1.00\right.$, $\mathrm{EtOH})\}$ determined the absolute stereochemistry to be as shown in $(+)$-4. Since (R)-cationic oxazaborolidium catalyst ent-6 is readily available, natural (-)-phyllostine was synthesized by using the same route with an overall yield of 72% in only six steps and its optical rotation $\left\{[\alpha]_{D}^{22}=-116(c=1.00, \mathrm{EtOH})\right\}$ corresponds well with the values of $[\alpha]_{\mathrm{D}}^{28}=-120(c=0.28$, $\mathrm{EtOH})$ and $[\alpha]_{\mathrm{D}}^{24}=-108(c=1.61, \mathrm{EtOH})$ found in the literature. ${ }^{9 \mathrm{e}, \mathrm{f}}$

Scheme 4. Reagents and conditions (a) DIBAL-H, THF, $-78^{\circ} \mathrm{C}(70 \%)$; (b) 2,2-dimethoxypropane, PPTS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$ (87\%); (c) $\mathrm{I}_{2}, \mathrm{PhI}$ $\left(\mathrm{OCOCF}_{3}\right)_{2}$, pyridine, 2,6-di-tert-butyl-4-methylphenol, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25$ ${ }^{\circ} \mathrm{C}(78 \%)$; (d) (E)-tributyl-1-propenyl-stannane, $\mathrm{Pd}_{2} \mathrm{dba}_{3}, \mathrm{PhCH}_{3}, 110$ ${ }^{\circ} \mathrm{C}$; (e) $1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$, Acetone-THF (1:1), $25^{\circ} \mathrm{C}$ (76% for two steps).

Regioselective and stereoselective reduction of $\mathbf{4}$ using Kiyooka's conditions ${ }^{14}$ (2 eq. DIBAL-H, THF, $-78^{\circ} \mathrm{C}$) was directed by the primary hydroxyl group and epoxide oxygen to furnish 15 in 70% yield through the intermediacy of the aluminium complex 14. The diol in $\mathbf{1 5}$ was protected as the acetonide $\mathbf{1 6}$ in 87% yield. The α-iodination of $\mathbf{1 6}$ afforded iodoenone 17 in 78% yield. ${ }^{8 b}$ Finally, Stille cross-coupling ${ }^{8 \mathrm{c}}$ with (E)-1-propenyl stannane followed by deprotection of the acetonide under acidic conditions gave chiral monomer 3 of epoxyquinols A and B in 76% two steps yield. The identity of our synthetic material was fully established through the comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. The specific rotation of $3\left\{[\alpha]_{D}^{21}=+282(c=0.10\right.$, $\mathrm{MeOH})\}$ is in perfect agreement with the literature value of $[\alpha]_{\mathrm{D}}^{25}=+285(c=0.41, \mathrm{MeOH}) .{ }^{8 \mathrm{~b}}$

In summary, we have accomplished an efficient enantioselective synthesis of chiral monomer 3 of epoxyquinols A and B via (+)-phyllostine in 26% overall yield by an 11 -step sequence through a catalytic asymmetric Diels-Alder reaction. Also, this approach has resulted in the short synthesis of natural product (-)-phyllostine with an overall yield of 72% in only six steps.

Experimental

Unless stated otherwise, reactions were carried out under a dry argon atmosphere in vacuum-flame dried glassware. Thinlayer chromatography (TLC) was performed on Merck silica gel 60 F254. Flash chromatography was performed using E. Merck silica gel ($40 \sim 60 \mu \mathrm{~m}$ particle size). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian at 300 and 75 MHz . Infrared spectra were recorded on a Bruker Vertex 70. HRMS were recorded on JEOL JMS-SX102A mass spectrometer with EI or FAB resource. Analytical high performance liquid chromatography (HPLC) was performed on FUTECS NS 4000 at 256 nm using the indicated chiral column ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$). Optical rotations were determined on a Perkin-Elmer Polarimeter Model 343 plus at 589 nm . Commercial grade reagents and solvents were used without further purification.
(1'RS,4'SR,4a'RS,8a'SR)-1',4',4a',8a'-Tetrahydrospiro-\{1,3 dioxolane- $2,5^{\prime}\left(8^{\prime} H\right)-\left[1^{\prime}, 4^{\prime}\right]$ methanonaphtho $\left.2,3-b\right]$ oxiren $\}-7^{\prime}$ -
one (11). To a solution of $9(0.2875 \mathrm{~g}, 1.32 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}$ $(13 \mathrm{~mL})$ was added $30 \mathrm{wt} \% \mathrm{H}_{2} \mathrm{O}_{2}(1.35 \mathrm{~mL}, 13.2 \mathrm{mmol})$ and $\operatorname{DBU}(0.986 \mathrm{~mL}, 6.6 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h at that same temperature. The reaction mixture was quenched with saturated $\mathrm{NaHCO}_{3}(\mathrm{aq})$. Organic materials were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$, and the combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated in vacuo, and the residue was purified by silica gel column chromatography (ethyl acetate : hexane, $1: 3$) to afford $0.2839 \mathrm{~g}(92 \%)$ of $\mathbf{1 1}: \mathrm{TLC}: R_{f}=0.38$ (ethyl acetate: hexane , $1: 3$); mp $123 \sim 125^{\circ} \mathrm{C}$; IR (NaCl) : 2983, 2901, 2361, 2341, 1709, 1148, 1075, 1018, 866, 746, 613; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.15(\mathrm{dd}, J=3.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}$, $=\mathrm{CH}), 6.03(\mathrm{dd}, J=3.0,5.7 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 4.26-3.76(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{O}^{\left.-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}\right), 3.33-3.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{CH}), 3.18 \text { (dd, } J=3.6 \text {, }}$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 3.11 (bs, $1 \mathrm{H}, \mathrm{CH}$), 3.04 (dd, $J=3.0,11.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}$), 2.95 (bs, $1 \mathrm{H}, \mathrm{CH}$), 1.42 (dt, $J=4.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}$, CHH), 1.24 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 206.3,135.6,133.7,107.9,65.5,64.7,58.1,55.3$, 49.5, 48.5, 47.0, 43.2, 42.5; HRMS (EI) exact mass calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{4}: m / z 235.0965\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found: $m / z 235.0970([\mathrm{M}+$ $\mathrm{H}]^{+}$); $[\alpha]_{\mathrm{D}}^{22}=+28$ (c 1.0, CHCl_{3}).
(1'RS,4'SR,4a'RS,8a'SR)-8a'-(Hydroxymethyl)-1',4',4a',8a'-tetrahydrospiro- $\left\{1,3\right.$ dioxolane- $2,5^{\prime}\left(8^{\prime} H\right)$ - $\left[1^{\prime}, 4^{\prime}\right]$ methanonaphtho [2,3-b]oxiren $\}$-8'-one (12). To a solution of $\mathbf{1 1}(0.4156 \mathrm{~g}$, $1.77 \mathrm{mmol})$ in THF $(17 \mathrm{~mL})$ was added DBU $(0.292 \mathrm{~mL}, 1.95$ $\mathrm{mmol})$ and $37 \mathrm{wt} \%$ formaldehyde ($1.32 \mathrm{~mL}, 17.7 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h at that same temperature. The reaction mixture was quenched with saturated NaHCO_{3} (aq). Organic materials were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$, and the combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated in vacuo, and the residue was purified by silica gel column chromatography (ethyl acetate : hexane, $1: 1$) to afford $0.4595 \mathrm{~g}(98 \%)$ of 12: TLC : $R_{f}=0.31$ (ethyl acetate : hexane , $1: 1$); IR (NaCl): 3500, 3461, 2979, 2887, 2360, 1701, 1158, 1000, 877, 746, 606; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.14(\mathrm{dd}, J=2.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}$, $=\mathrm{CH}), 6.05(\mathrm{dd}, J=3.0,5.1 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 4.29(\mathrm{dd}, J=7.2$, $11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}), 4.24-3.85\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}\right), 3.66$ (dd, $J=5.4,11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}$), 3.34 (m, 2 H, CH-CH), 3.14 (bs, $1 \mathrm{H}, \mathrm{CH}$), 2.91 (bs, 1 HCH$), 2.51$ (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $1.92(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 1.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$) ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.7,137.8,134.4,107.5,69.4,66.0,64.8$, $61.3,58.8,55.6,52.4,46.1,45.0,43.9$; HRMS (EI) exact mass calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}$: $m / z 307.1724\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found: m / z $307.1729\left([\mathrm{M}+\mathrm{H}]^{+}\right)$. HRMS (EI) exact mass calcd. for C_{14} $\mathrm{H}_{16} \mathrm{O}_{5}: m / z 265.1071\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found: $m / z 265.1076([\mathrm{M}+$ $\left.\mathrm{H}]^{+}\right) ;[\alpha]_{\mathrm{D}}^{22}=-66\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$.
(1RS,4SR,4aRS,8aSR)-8a-(Hydroxymethyl)-1,4,4a,8a-tetra hydro $[1,4]$ methanonaphtho [2,3-b]oxiren $\}$-5,8-dione (13). To a solution of $\mathbf{1 2}(0.0858 \mathrm{~g}, 0.32 \mathrm{mmol})$ in Acetone-THF ($1: 1$, 3 mL) was added $1 \mathrm{NH}_{2} \mathrm{SO}_{4}(1.5 \mathrm{~mL})$ at rt , and the mixture was stirred for 6 h at that same temperature. The reaction mixture was quenched with $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$. Organic materials were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$, and the combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated in vacuo, and the residue was purified by silica gel column chromatography (ethyl acetate :
hexane, $1: 1$) to afford $0.07 \mathrm{~g}(98 \%)$ of 12: TLC : $R_{f}=0.36$ (ethyl acetate : hexane, $1: 1$); mp $146 \sim 148{ }^{\circ} \mathrm{C} ; \mathrm{IR}(\mathrm{NaCl})$: 2983, 2925, 2360, 2338, 1707, 1290, 1039, 991, 846, 719, 628; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.07(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 4.36$ (d, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}), 3.82(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH})$, 3.58 (m, 2 H, CH,CH), 3.33 (bs, 2 H, CH-CH), 2.84 (d, $J=3.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}), 1.91(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 1.54-1.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.7,203.7$, 138.2, 138.1, 68.5 , 61.1, 58.9, 57.9, 53.4, 46.1, 44.2, 43.1; HRMS (EI) exact mass calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{4}$: $m / z 221.0808\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found: m / z $221.0814\left([\mathrm{M}+\mathrm{H}]^{+}\right) ;[\alpha]_{\mathrm{D}}^{21}=-97(\mathrm{c} 1.0, \mathrm{THF})$.

Acknowledgements. This work was supported by grants NRF-20090094024 (Priority Research Centers Program), NRF20080058667 (Basic Science Research Program), NRF-2009 0076108 (Basic Science Research Program) and KRF-2008-331-C00160 (Basic Science Research Program). We thank Dr Hyun Sue Huh for X-ray analyses.

References and Notes

1. Carmeliet, P. Angiogenesis in Health and Disease; Nat. Med. 2003, 9, 653.
2. Soker, S.; Takashima, S.; Miao, H. Q.; Neufeld, G.; Klagsbrun, M. Cell 1998, 92, 735.
3. Kerbel, R. S. Bioessays 1991, 13, 31.
4. Gasparini, G. Drugs 1999, 58, 17.
5. Ryan, C. J.; Wilding, G. Drugs \& Aging 2000, 17, 249.
6. (a) Hiroshi, K.; Onose, R.; Koshino, H.; Yoshida, A.; Kobayashi, K.; Kageyama, S.-I.; Osada, H. J. Am. Chem. Soc. 2002, 124, 3496.
(b) Kakeya, H.; Onose, R.; Yoshida, A.; Koshino, H.; Osada, H. J. Antibiot. 2002, 55, 829.
7. (a) Kamiyama, H.; Hideaki, K.; Takeo, U.; Kiyohiro, N.; Mitsuru, S.; Yujiro, H.; Hiroyuki, O. Oncology Research 2008, 17, 11. (b) Kamiyama, H.; Usui, T.; Uramoto, M.; Takagi, H.; Shoji, M.; Hayashi, Y.; Kakeya, H.; Osada, H. J. Antibiot. 2008, 61, 94. (c) Kamiyama, H.; Usui, T.; Sakurai, H.; Shoji, M.; Hayashi, Y.; Kakeya, H.; Osada, H. Biosci. Biotechnol. Biochem. 2008, 72, 1894.
8. (a) Shoji, M.; Yamaguchi, J.; Kakeya, H.; Osada, H.; Hayashi, Y. Angew. Chem. Int. Ed. 2002, 41, 3192. (b) Shoji, M.; Imai, H.; Mukaida, M.; Sakai, K.; Kakeya, H.; Osada, H.; Hayashi, Y. J. Org. Chem. 2005, 70, 79. (c) Li, C.; Bardhan, S.; Pace, E. A.; Liang, M.-C.; Gilmore, T. D.; Porco. J. A., Jr. Org. Lett. 2002, 4, 3267. (d) Mehta, G.; Islam, K. Tetrahedron Lett. 2004, 45, 3611. (e) Kuwahara, S.; Imada, S. Tetrahedron Lett. 2005, 46, 547.
9. (a) Sakamura, S.; Ito, J.; Sakai, R. Agr. Biol. Chem. 1970, 34, 153. (b) Sakamura, S.; Ito, J.; Sakai, R. Agr. Biol. Chem. 1971, 35, 105. (c) Ichihara, A.; Oda, K.; Sakamura, S.; Tetrahedron Lett. 1972, 50, 5105. (d) Ichihara, A.; Kimura, R.; Oda, K.; Sakamura, S. Tetrahedron Lett. 1976, 51, 4741. (e) Okamura, H.; Shimizu, H.; Yamashita, N.; Iwagawa, T.; Nakatani, M. Tetrahedron 2003, 59, 10159. (f) Mehta, G.; Islam, K. Tetrahedron Lett. 2004, 45, 7683. (g) Yoshida, N.; Konno, H.; Kamikubo, T.; Takahashi, M.; Ogasawara, K. Tetrahedron 1999, 10, 3849.
10. Bayón, P.; Marjanet, G.; Toribio, G.; Alibés, R.; March, P. D.; Figueredo, M.; Font, J. J. Org. Chem. 2008, 73, 3486.
11. (a) The Mikami catalyst has also been found to afford good results with 1,4-quinone monoketals as substrates. see: Breuning, M.; Corey, E. J. Org. Lett. 2001, 3, 1559. (b) Ryu, D. H.; Zhou, G.; Corey, E. J. J. Am. Chem. Soc. 2004, 126, 4800. (c) Ryu, D. H.; Corey, E. J. J. Am. Chem. Soc. 2003, 125, 6388. (d) Ryu, D. H.; Lee, T. W. Corey, E. J. J. Am. Chem. Soc. 2002, 124, 9992. (e) Ryu, D. H.; Kim, K. H.; Sim, J. Y.; Corey, E. J. Tetrahedron Lett. 2007, 48, 5735. (f) Lee, M. Y.; Kim, K. H.; Jiang, S.; Jung, Y. H.;

Sim, J. Y.; Hwang, G.-S.; Ryu, D. H. Tetrahedron Lett. 2008, 49, 1965. (g) Sim, J. Y.; Hwang, G.-S.; Kim, K. H.; Ko, E. M.; Ryu, D. H. Chem. Commun. 2007, 5064. (h) Corey, E. J. Angew. Chem. Int. Ed. 2009, 48, 2100. (i) Senapati, B. K.; Hwang, G.-S.; Lee, S.; Ryu, D. H. Angew. Chem. Int. Ed. 2009, 48, 4398. (j) Gao, L.; Hwang, G.-S.; Lee, M. Y.; Ryu, D. H. Chem. Commun. 2009, 5460. (k) Kim, J. Y.; Hwang, G.-S.; Lee, S. M.; Han, J. H.; Kim, E. Y.; Ryu, D. H. Bull. Korean Chem. Soc. 2009, 30, 289. (1) Jin, M. Y.; Hwang, G.-S.; Chae, H. I.; Jung, S. H.; Ryu, D. H. Bull. Korean Chem. Soc. 2010, 31, 727.
12. Triflic acid activated catalyst $\mathbf{6}$ provided the Diels-Alder adduct 9 with better enantioselectivity compared to triflimide or aluminium bromide activated catalyst.
13. Crystal data for $10: \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{IO}_{3}, M=344.15$. Orthorhombic, space $\operatorname{group} P 2{ }_{1} 2_{1} 2_{1}, \lambda=0.71073 \AA, a=5.8347(11), b=14.046(3), c=$
15.419(3) $\AA, \alpha=90^{\circ}, \beta=90^{\circ}, \gamma=90^{\circ}, V=1263.7(4) \AA^{3}, Z=4$, $D_{c}=1.809 \mathrm{Mg} / \mathrm{m}^{-3}, F(000)=672, T=296(2) \mathrm{K}, \mu=2.528 \mathrm{~mm}^{-1}$, size: $0.28 \times 0.18 \times 0.10 \mathrm{~mm}^{3}$. θ range $=3.01 \sim 28.38^{\circ}$, Reflections collected: 20039, Independent reflections: $3105[R($ int $)=0.0314]$, Final R indices $[I>2 \operatorname{sigma}(I)]: R_{1}=0.0271, w R_{2}=0.0651, R$ indices (all data): $R_{1}=0.0341, w R_{2}=0.0694$, Refinement method: Full-matrix least-squares on F^{2}. Crystallographic data for the structure reported here have been deposited with the Cambridge Crystallographic Data Centre (Deposition No. CCDC-763142). That data can be obtained free of charge $v i a$ http://www.ccdc.cam.ac.uk/ perl/catreq.cgi (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033; e-mail: deposit@ccdc.cam. ac.uk).
14. Kiyooka, S.-I.; Kuroda, H.; Shimasaki, Y. Tetrahedron Lett. 1986, 27, 3009.

