DOI QR코드

DOI QR Code

A Density Functional Theory Investigation on Intramolecular Hydrogen Transfer of the [Os3(CO)11P(OMe)3(Ru(η5-C5H5))2] Cluster

  • Buntem, Radchada (Department of Chemistry, Faculty of Science, Silpakorn University) ;
  • Punyain, Kraiwan (Department of Chemistry, Faculty of Science, Naresuan University) ;
  • Tantirungrotechai, Yuthana (National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency) ;
  • Raithby, Paul R. (Department of Chemistry, University of Bath) ;
  • Lewis, Jack (Department of Chemistry, University of Cambridge)
  • Published : 2010.04.20

Abstract

The reduction of [$Os_3(CO)_{11}P(OMe)_3$] and subsequent ionic coupling of the reduced species with $[Ru({\eta}^5-C_5H_5)(CH_3CN)_3]^+$ resulted in the formation of [$Os_3(CO)_{11}P(OMe)_3(Ru({\eta}^5-C_5H_5))_2$] which can be converted to spiked tetrahedral cluster, [$HOs_3(CO)_{11}P(OMe)_3Ru_2({\eta}^5-C_5H_5)(C_5H_4)$] via the intramolecular hydrogen transfer. Due to the unavailability of a suitable single crystal, the PW91/SDD and LDA/SDD density functional methods were used to predict possible structures and the available spectroscopic information (IR, NMR) of [$Os_3(CO)_{11}P(OMe)_3(Ru({\eta}^5-C_5H_5))_2$]. The most probable geometry found by constrained search is the isomer (a2) in which the phosphite, $P(OMe)_3$, occupies an axial position on one of the two osmium atoms that is edge bridged by the $Ru(CO)_2({\eta}^5-C_5H_5)$ unit. By using the most probably geometry, the predicted infrared frequencies and $^1H$, $^{13}C$ and $^{31}P$ NMR chemical shifts of the compound are in the same range as the experimental values. For this type of complex, the LDA/SDD method is appropriate for IR predictions whereas the OPBE/IGLO-II method is appropriate for NMR predictions. The activation energy and reaction energy of the intramolecular hydrogen transfer coupled with the structural change of the transition metal framework were estimated at the PW91/SDD level to be 110.32 and -0.14 kcal/mol respectively.

Keywords

References

  1. Mingos, D. M. P.; Wales, D. J. Introduction to Cluster Chemistry;Prentice-Hall: Englewood Cliffs, 1990.
  2. Sergeev, G. B. Nanochemistry; Elsevier: Amsterdam, 2006.
  3. Mauro, M.; Panigati, M.; Donghi, D.; Mercandelli, P.; Mussini,P.; Sironi, A.; D'Alfonso, G. Inorg. Chem. 2008, 47, 11154. https://doi.org/10.1021/ic801447z
  4. Beltran, L. M. C.; Long, J. R. Acc. Chem. Res. 2005, 38, 325. https://doi.org/10.1021/ar040158e
  5. Edwards, A. J.; Lewis, J.; Li, C.-K.; Morewood, C. A.; Raithby,P. R.; Shields, G. P. Polyhedron 2006, 25, 211. https://doi.org/10.1016/j.poly.2005.06.030
  6. Al-Mandhary, M.; Buntem, R.; Doherty, C.; Edwards, A.; Gallagher,J.; Lewis, J.; Li, C.-K.; Raithby, P.; Ramirez de Arellano,M.; Shields, G. Journal of Cluster Science 16, 127. https://doi.org/10.1007/s10876-005-4402-2
  7. Buntem, R.; Lewis, J.; Morewood, C. A.; Raithby, P. R.; Ramirezde Arellano, M. C.; Shields, G. P. J. Chem. Soc., Dalton Trans.1998, 1091.
  8. Buntem, R.; Gallagher, J. F.; Lewis, J.; Raithby, P. R.; Rennie,M.-A.; Shields, G. P. J. Chem. Soc., Dalton Trans. 2000, 4297.
  9. White, C.; Thomson, J.; Maitlis, P. M. J. Chem. Soc., Dalton Trans.1977, 1654.
  10. Bennett, M. A.; Smith, K. J. Chem. Soc., Dalton Trans. 1974, 233.
  11. Lewis, J. Unpublished work.
  12. Gill, T. P.; Mann, K. R. Organometallics 1982, 1, 485. https://doi.org/10.1021/om00063a014
  13. Elian, M.; Chen, M. M. L.; Mingos, D. M. P.; Hoffmann, R. Inorg. Chem. 1976, 15, 1148. https://doi.org/10.1021/ic50159a034
  14. Buntem, R. Synthetic Studies in Carbonyl Cluster Compounds of Osmium; University of Cambridge: Cambridge, 1995.
  15. Cramer, C. J. Essentials of Computational Chemistry: Theories and Models, 2nd ed.; Wiley: UK, 2003.
  16. Neese, F. J. Biol. Inorg. Chem. 2006, 11, 702. https://doi.org/10.1007/s00775-006-0138-1
  17. Ray, K.; Petrenko, T.; Wieghardt, K.; Neese, F. Dalton Trans. 2007,1552.
  18. Hunstock, E.; Mealli, C.; Calhorda, M. J.; Reinhold, J. Inorg. Chem. 1999, 38, 5053. https://doi.org/10.1021/ic9905289
  19. Lokbani-Azzouz, N. S.; Boucekkine, A.; Halet, J.-F.; Saillard, J.-Y.J. Cluster Sci. 2003, 14, 49. https://doi.org/10.1023/A:1022901524393
  20. Kutzelnigg, W.; Fleischer, U.; Schindler, M. The IGLO-Method: Ab-initio Calculation and Interpretation of NMR Chemical Shifts and Magnetic Susceptibilities; Springer: Berlin, 1991.
  21. Peng, C.; Ayala, P. Y.; Schlegel, H. B.; Frisch, M. J. J. Comp. Chem.1996, 17, 49. https://doi.org/10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0
  22. Peng, C.; Schlegel, H. B. Israel J. of Chem. 1993, 449.
  23. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. 2004.
  24. Avogadro software available at http://avogadro.openmolecules.net.
  25. Avogadro software available at http://avogadro.openmolecules.net.
  26. Jeffrey, J. G.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R.; Welch,D. A. J. Chem. Soc., Chem. Commun. 1986, 4, 318.
  27. Wang, W.; Batchelor, R. J.; Einstein, F. W. B.; Lu, C. Y.; Pomeroy, R. K. Organometallics 1993, 12, 3598. https://doi.org/10.1021/om00033a036
  28. Fowe, E. P.; Belser, P.; Daula, C.; Chermette, H. Phys. Chem. Chem. Phys. 2005, 7, 1732. https://doi.org/10.1039/b500574d
  29. Beck, W.; Klapoetke, T. M.; Ponikwar, W. Z. Naturforsch. 2002,57b, 1120.
  30. Koch, W.; Holthausen, M. C. A Chemist's Guide to Density FunctionalTheory, 2nd ed.; Wiley-VCH: Weinheim, 2001.