DOI QR코드

DOI QR Code

Visible-photoresponsive Nitrogen-Doped Mesoporous TiO2 Films for Photoelectrochemical Cells

  • Bae, Jae-Young (Department of Chemistry, Keimyung University) ;
  • Yun, Tae-Kwan (School of Display and Chemical Engineering, Yeungnam University) ;
  • Ahn, Kwang-Soon (School of Display and Chemical Engineering, Yeungnam University) ;
  • Kim, Jae-Hong (School of Display and Chemical Engineering, Yeungnam University)
  • Published : 2010.04.20

Abstract

Nitrogen-doped $TiO_2$ ($TiO_2$:N) nano-particles with a pure anatase crystalline structure were successfully synthesized through the hydrolysis of $TiCl_4$ in an ammonia aqueous solution. The samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), $N_2$-sorption, and UV-vis diffuse reflectance spectra (UV-vis DRS) techniques. The absorption edge of nitrogen-doped $TiO_2$ shifted into the visible wavelength region. The photoelectrochemical (PEC) performances were investigated for the $TiO_2$ mesoporous electrodes doped with different nitrogen concentrations. The $TiO_2$:N electrodes exhibited much higher PEC responses compared to the pure $TiO_2$ electrode because of the significantly enhanced visible-photoresponsibility of the $TiO_2$:N electrodes.

Keywords

References

  1. Fujishima, A.; Honda, K. Nature 1972, 238, 37. https://doi.org/10.1038/238037a0
  2. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science2001, 293, 269. https://doi.org/10.1126/science.1061051
  3. O’Regan, B.; Grätzel, M. Nature 1991, 353, 737. https://doi.org/10.1038/353737a0
  4. Bendavid, A.; Martin, P. J.; Jamting, A.; Takikawa, H. Thin Solid Films 1999, 355, 6. https://doi.org/10.1016/S0040-6090(99)00436-8
  5. Lindgren, T.; Mwabora, J. M.; Avendaño, E.; Jonsson, J.; Hoel, A.;Granqvist, C. G.; Lindquist, S. E. J. Phys. Chem. B 2003, 107, 5709. https://doi.org/10.1021/jp027345j
  6. Yamashita, H.; Ichihashi, Y.; Takeuchi, M.; Kishiguchi, S.; Anpo,M. J. Synchrotron Rad. 1999, 6, 451. https://doi.org/10.1107/S0909049598017257
  7. Anpo, M.; Takeuchi, M. Int. J. Photoenergy 2001, 3, 89. https://doi.org/10.1155/S1110662X01000101
  8. Borgarello, E.; Kiwi, J.; Grätzel, M.; Pelizzetti, E. J. Am. Chem. Soc. 1982, 104, 2996. https://doi.org/10.1021/ja00375a010
  9. Zhao, W.; Ma, W. H.; Chen, C. C.; Zhao, J. C.; Shuai, Z. G. J. Am. Chem. Soc. 2004, 126, 4782. https://doi.org/10.1021/ja0396753
  10. Ren, W. J.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z.; Fan, X. X.; Zou, Z. G.Appl. Catal. B: Environ. 2007, 69, 138. https://doi.org/10.1016/j.apcatb.2006.06.015
  11. Yu, J. G.; Zhou, M. H.; Cheng, B.; Zhao, X. J. J. Mol. Catal. A: Chem. 2006, 246, 176. https://doi.org/10.1016/j.molcata.2005.10.034
  12. Li, D.; Haneda, H.; Labhsetwar, N. K.; Hishita, S.; Ohashi, N.Chem. Phys. Lett. 2005, 401, 579. https://doi.org/10.1016/j.cplett.2004.11.126
  13. Sato, S. Chem. Phys. Lett. 1986, 123, 126. https://doi.org/10.1016/0009-2614(86)87026-9
  14. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science2001, 293, 269. https://doi.org/10.1126/science.1061051
  15. Irie, H.; Watanabe, Y.; Hashimoto, K. J. Phys. Chem. B 2003, 107,5483. https://doi.org/10.1021/jp030133h
  16. Kitano, M.; Funatsu, K.; Matsuoka, M.; Ueshima, M.; Anpo, M. J. Phys. Chem. B 2006, 110, 25266. https://doi.org/10.1021/jp064893e
  17. Reyes-Garcia, E. A.; Sun, Y.; Reyes-Gil , K.; Raftery, D. J. Phys. Chem. C 2007, 111, 2738. https://doi.org/10.1021/jp0652289
  18. Burda, C.; Lou, Y. B.; Chen, X. B.; Samia, A. C. S.; Stout, J.; Gole,J. L. Nano Lett. 2003, 3, 1049. https://doi.org/10.1021/nl034332o
  19. Zhang, Q.; Gao, L.; Guo, J. J. Eur. Ceram. Soc. 2000, 20, 2153. https://doi.org/10.1016/S0955-2219(00)00085-6
  20. Harris, M. T.; Brunson, R. R.; Byers, C. H. J. Non-Cryst. Solids1990, 121, 397. https://doi.org/10.1016/0022-3093(90)90165-I
  21. Li, H.; Li, J.; Huo, Y. J. Phys. Chem. B 2006, 110, 1559. https://doi.org/10.1021/jp055830j
  22. Valentin, C. D.; Finazzi, E.; Pacchioni, G.; Selloni, A.; Livraghi, S.;Paganini M. C.; Giamello, E. Chem. Phys. 2007, 339, 44. https://doi.org/10.1016/j.chemphys.2007.07.020

Cited by

  1. on Wool Fabric at Low Temperature: Introducing Self-cleaning, Hydrophilicity, Antibacterial/Antifungal Properties with low Alkali Solubility, Yellowness and Cytotoxicity vol.90, pp.6, 2014, https://doi.org/10.1111/php.12324
  2. Fabrication of titanium dioxide nanotubes in fluoride-free electrolyte via rapid breakdown anodization vol.22, pp.6, 2015, https://doi.org/10.1007/s10934-015-0024-8
  3. Controlled nitrogen insertion in titanium dioxide for optimal photocatalytic degradation of atrazine vol.5, pp.55, 2015, https://doi.org/10.1039/C5RA00890E