DOI QR코드

DOI QR Code

Coexistence of Closely Packed c(4 × 2) and Striped Phases in Self-Assembled Monolayers of Decylthiocyanates on Au(111)

  • Choi, Young-Sik (Department of Chemistry and Research Institute for Natural Sciences, Hanyang University) ;
  • Kang, Hun-Gu (Department of Chemistry and Research Institute for Natural Sciences, Hanyang University) ;
  • Choi, In-Chang (Department of Chemistry and Research Institute for Natural Sciences, Hanyang University) ;
  • Lee, Nam-Suk (Department of Chemistry and Research Institute for Natural Sciences, Hanyang University) ;
  • Cho, Jun-Hyung (Department of Physics, Hanyang University) ;
  • Jang, Chang-Hyun (College of Bionano Technology, Kyungwon University) ;
  • Noh, Jaeg-Eun (Department of Chemistry and Research Institute for Natural Sciences, Hanyang University)
  • Published : 2010.04.20

Abstract

Decylthiocyanate (DTC) self-assembled monolayers (SAMs) on Au(111) were prepared by solution and vapor phase deposition methods at $50^{\circ}C$ for 24 h. The formation and surface structure of DTC SAMs were examined using scanning tunneling microscopy (STM). STM imaging revealed that DTC SAMs formed in 1 mM ethanol solution at $50^{\circ}C$ were composed of small ordered domains with lateral dimensions of a few nanometers and disordered phases, whereas DTC SAMs formed in the vapor phase at $50^{\circ}C$ contained two ordered phases: a closely packed c($4{\times}2$) superlattice and a striped phase with an interstripe spacing of 2.6 - 2.8 nm. It was also found that the ordered domain and vacancy island formation for DTC SAMs on Au(111) differs significantly from that of decanethiol SAMs, suggesting that adsorption mechanism is different from each other. From this study, it was confirmed that DTC SAMs with a high degree of structural order can be obtained by vapor phase deposition.

Keywords

References

  1. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Chem. Rev. 2005, 105, 1103. https://doi.org/10.1021/cr0300789
  2. Ito, E.; Aria, T.; Hara, M.; Noh, J. Bull. Korean Chem. Soc. 2009, 30, 1309. https://doi.org/10.5012/bkcs.2009.30.6.1309
  3. Kramer, S.; Fuierer, R. R.; Gorman, C. B. Chem. Rev. 2003, 103, 4367. https://doi.org/10.1021/cr020704m
  4. Ito, E.; Hara, M.; Kanai, K.; Ouchi, Y.; Seki, K.; Noh, J. Bull. Korean Chem. Soc. 2009, 30, 1755. https://doi.org/10.5012/bkcs.2009.30.8.1755
  5. Noh, J.; Kato, H. S.; Kawai, M.; Hara, M. J. Phys. Chem. B 2006, 110, 2793. https://doi.org/10.1021/jp055538b
  6. Kang, H.; Lee, H.; Kang, Y.; Hara, M.; Noh, J. Chem. Commun. 2008, 5197.
  7. Noh, J.; Hara, M. Langmuir 2002, 18, 9111. https://doi.org/10.1021/la011414o
  8. Lim, J. A.; Lee, H. S.; Lee, W. H.; Cho, K. Adv. Funct. Mater. 2009, 19, 1515. https://doi.org/10.1002/adfm.200801135
  9. Sharma, M.; Komiyama, M.; Engstrom, J. R. Langmuir 2008,24, 9937. https://doi.org/10.1021/la800905e
  10. Yokota, Y.; Miyazaki, A.; Fukui, K.-i.; Enoki, T.; Hara, M. J. Phys. Chem. B 2005, 109, 23779. https://doi.org/10.1021/jp0558472
  11. Yang, G.; Liu, G.-y. J. Phys. Chem. B 2003, 107, 8746. https://doi.org/10.1021/jp0219810
  12. Kang, H.; Park, T.; Choi, I.; Lee, Y.; Ito, E.; Hara, M.; Noh, J. Ultramicroscopy 2009, 109, 1011. https://doi.org/10.1016/j.ultramic.2009.03.036
  13. Tour, J. M.; Jones, L.; Pearson, D. L.; Lamba, J. J. S.; Burgin, T. P.; Whitesides, G. M.; Allara, D. L.; Parikh, A. N.; Atre, S. V. J. Am. Chem. Soc. 1995, 117, 9529. https://doi.org/10.1021/ja00142a021
  14. Cai, L.; Yao, Y.; Yang, J.; Price, D.W.; Tour, J. M. Chem. Mater. 2002, 14, 2905. https://doi.org/10.1021/cm011509b
  15. Jeong, Y.; Kwon, S.; Kang, Y.; Lee, C.; Ito, E.; Hara, M.; Noh, J. Ultramicroscopy 2007, 107, 1000. https://doi.org/10.1016/j.ultramic.2007.02.038
  16. Park, T.; Kang, H.; Choi, I.; Chung, H.; Ito, E.; Hara, M.; Noh, J. Bull. Korean Chem. Soc. 2009, 30, 441. https://doi.org/10.5012/bkcs.2009.30.2.441
  17. Lukkari, J.; Meretoja, M.; Kartio, I.; Laajalehto, K.; Rajamaki, M.; Lindstrom, M.; Kankare, J. Langmuir 1999, 15, 3529. https://doi.org/10.1021/la9811719
  18. Murphy, K. L.; Tysoe, W. T.; Bennett, D. W. Langmuir 2004, 20, 1732. https://doi.org/10.1021/la030293k
  19. Noh, J.; Kato, H. S.; Kawai, M.; Hara, M. J. Phys. Chem. B 2002, 106, 13268. https://doi.org/10.1021/jp021742c
  20. Ciszek, J. W.; Stewart, M. P.; Tour, J. M. J. Am. Chem. Soc. 2004, 126, 13172. https://doi.org/10.1021/ja0472477
  21. Ciszek, J. W.; Tour, J. M. Chem. Mater. 2005, 17, 5684. https://doi.org/10.1021/cm0510357
  22. Dreesen, L.; Volcke, C.; Sartenaer, Y.; Peremans, A.; Thiry, P. A.; Humbert, C.; Grugier, J.; Marchand-Brynaert, J. Surf. Sci. 2006, 600, 4052. https://doi.org/10.1016/j.susc.2006.01.122
  23. Sartenaer, Y.; Dreesen, L.; Humbert, C.; Volcke, C.; Tourillon, G.; Louette, P.; Thiry, P. A.; Peremans, A. Surf. Sci. 2007, 601, 1259. https://doi.org/10.1016/j.susc.2006.12.066
  24. Choi, Y.; Jeong, Y.; Chung, H.; Ito, E.; Hara, M.; Noh, J. Langmuir2008, 24, 91. https://doi.org/10.1021/la701302g
  25. Shen, C.; Buck, M.; Wilton-Ely, J. D. E. T.; Weidner, T.; Zarnikov, M. Langmuir 2008, 24, 6609. https://doi.org/10.1021/la8004272
  26. Qian, Y.; Yang, G.; Jung, T. A.; Liu, G.-y. Langmuir 2003, 19,6056. https://doi.org/10.1021/la0267701
  27. Riposan, A.; Liu, G.-y. J. Phys. Chem. B 2006, 110, 23926. https://doi.org/10.1021/jp063774w
  28. Poirier, G. E. Langmuir 1999, 15, 1167. https://doi.org/10.1021/la981374x
  29. Noh, J.; Hara, M. Langmuir 2000, 16, 2045. https://doi.org/10.1021/la991423l
  30. Noh, J.; Hara, M. Langmuir 2001, 17, 7208.

Cited by

  1. Effects of Solvent on the Structure of Octanethiol Self-Assembled Monolayers on Au(111) at a High Solution Temperature vol.31, pp.8, 2010, https://doi.org/10.5012/bkcs.2010.31.8.2137
  2. Direct Adsorption and Molecular Self-Assembly of Octylthioacetates on Au(111) in the Vapor Phase vol.32, pp.1, 2010, https://doi.org/10.5012/bkcs.2011.32.1.39
  3. Steric hindrance and exchange in the coadsorption of octanethiol and decyl thiocyanate on Au(111) vol.694, pp.None, 2020, https://doi.org/10.1016/j.susc.2020.121562