DOI QR코드

DOI QR Code

Structure-Activity Relationships of 13- and 14-Membered Cyclic Partial Retro-Inverso Pentapeptides Related to Enkephalin

  • Published : 2010.04.20

Abstract

A series of 13- and 14-membered cyclic enkephalin analogs based on the moderately $\mu$ selective prototype compound Tyr-C[D-$A_2bu$-Gly-Phe-Leu] 8a were synthesized to investigate the structure-activity relationship. The modifications of sequence were mainly focused on two positions 3 and 5, critical for the selective recognition for $\mu$ and $\delta$ opioid receptors. The substitution of hydrophobic $Leu^5$ with hydrophilic $Asp^5$ derivatives led to Tyr-C[D-$A_2bu$-Gly-Phe-Asp(N-Me)] 7 and Tyr-C[D-Glu-Phe-gPhe-rAsp(O-Me)] 5, the peptides with a large affinity losses at both $\mu$ and $\delta$ receptors. The substitution of $Phe^3$ with $Gly^3$ led to Tyr-C[D-Glu-Gly-gPhe-rLeu] 3 and Tyr-C[D-Glu-Gly-gPhe-D-rLeu] 4, the peptides with large affinity losses at $\mu$ receptors, indicating the critical role of phenyl ring of $Phe^3$ for $\mu$ receptor affinities. One atom reduction of the ring size from 14-membered analogs Tyr-C[D-Glu-Phe-gPhe-(L and D)-rLeu] 6a, 6b to 13-membered analogs Tyr-C[D-Asp-Phe-gPhe-(L and D)-rLeu] 1, 2 reduced the affinity at both $\mu$ and $\delta$ receptors, but increased the potency in the nociceptive assay, indicating the ring constrain is attributed to high nociceptive potency of the analogs. For the influence of D- or L-chirality of $Leu^5$ on the receptor selectivity, regardless of chirality and ring size, all cyclic diastereomers displayed marked $\mu$ selectivity with low potencies at the $\delta$ receptor. The retro-inverso analogs display similar or more active at $\mu$ receptor, but less active at $\delta$ receptor than the parent analogs.

Keywords

References

  1. Martin, W. R.; Eades, C. G.; Thompson, J. J.; Huppler, R. E.; Gilbert,P. E. J. Pharmacol. Exp. Ther. 1976, 197, 517.
  2. Lord, J. A. H.; Waterfield, A. A.; Hughes, J.; Kosterlitz, H. W. Nature(London) 1977, 267, 495. https://doi.org/10.1038/267495a0
  3. Herz, A.; Blasig, J.; Emrich, H. M.; Cording, C.; Piree, S.; Kolling,A.; Zerssen, K. V. In The Endorphins, Advanced in Biochemical Psychopharmacology; Costa, E.,Travucchi, M., Eds.; Raven: New York, 1978; Vol. 18, p 333.
  4. Gacel, G.; Gournie-Zaluski, M. C.; Fellion, E.; Roques, V. P. J. Med. Chem. 1981, 24, 1119. https://doi.org/10.1021/jm00142a002
  5. Chang, K. J.; Cuatrecassas, P.; Wei, E. T.; Chang, J. K. Life Sci.1982, 30, 1547. https://doi.org/10.1016/0024-3205(82)90242-9
  6. Fang, J. F.; fields, H. L.; Lee, N. M. J. Pharmacol. Exp. Ther. 1986, 238, 1039.
  7. Stein, L.; Belluzzi, J. K. In The Endorphins, Advances In Biochemical Psychopharmacology; Costa, E., Travucchi, M., Eds.; Raven:New York, 1978; Vol. 18, p 299.
  8. Roques, B. P. J. Pharmacol. 1986, 16, 5.
  9. Fournie-Zaluski, M. C.; Facel, G.; Maigret, B.; Prelimat, S.; Roques,B. P. Mol. Pharmacol. 1981, 20, 484.
  10. Burgen, A. S. V.; Roberts, G. C. K.; Feeney, J. Nature (London)1975, 253, 753. https://doi.org/10.1038/253753a0
  11. Maigret, B.; Fournie-Zaluski, M. C.; Roques, B. P.; Premilat, S.Mol. Pharmacol. 1985, 29, 314.
  12. Goodman, M.; Chorev, M. In Perspective in Peptide Chemistry;Eberle, R., Geiger and Wieland, T., Eds.; Karger Basel: 1981; p283.
  13. Katarzyna, F.; Marta, O.; Jacek, W.; Chung, N.; Schiller, P. W.;Danuta, P.; Agnieszka, Z.; Agnieszka, P.; Ewa, W.; Jan, I. J. Pept. Sci. 2005, 11(6), 347. https://doi.org/10.1002/psc.613
  14. Agnieszka, Z.; Sylwia, R.; Ukasz, R.; Nga, N. C.; Cezary, C.;Ewa, W.; Schiller, P. W.; Jerzy Ci, J. I. J. Pept. Sci. 2008, 14(7),830. https://doi.org/10.1002/psc.1010
  15. Weltrowska, G. Bioorg. Med. Chem. Lett. 2004, 14, 4731. https://doi.org/10.1016/j.bmcl.2004.06.077
  16. DiMaio, J.; Nguyen, J. M. D.; Lenieux, C.; Schiller, P. W. J. Med. Chem. 1982, 25, 1432. https://doi.org/10.1021/jm00354a008
  17. Mosberg, H. I.; Hurst, R.; Hruby, V. J.; Galligan, J. J.; Burks, T. F.;Gee, K.; Yamamura, H. I. Life Sci. 1983, 32, 2565. https://doi.org/10.1016/0024-3205(83)90239-4
  18. Shenderovich, M. M.; Nikiforovich, G. V.; Golbrakh, A. A. Int. J. Peptide Protein Res. 1991, 37, 241.
  19. Wilkes, B. C.; Schiller, P. W. Biopolymers 1990, 29, 89. https://doi.org/10.1002/bip.360290113
  20. Yamazaki, T.; Said Nejad, O. E.; Schiller, P. W.; Goodman, M.Biopolymers 1991, 31, 877. https://doi.org/10.1002/bip.360310708
  21. Schiller, P. W.; Nguyen, R. M. D.; Lemieux, C.; Maziak, L. A. J. Med. Chem. 1985, 28, 1766. https://doi.org/10.1021/jm00150a005
  22. Schiller, P. W.; Nguyen, T. M. D.; Maziak, L. A.; Wilkes, B. C.; Lemieux,C. J. Med. Chem. 1987, 30, 2094. https://doi.org/10.1021/jm00394a027
  23. Schiller, P. W.; Wilkes, B. C. In Recent Progress in the Chemistry and Biology of Opioid Peptides, (NIDA Research Monograph 87); Rapake, R. S., Dhawan, B. N., Eds.; U. S. Government PrintingOffice: Washington, DC, 1988; p 60.
  24. Mammi, N. J.; Hassan, M.; Goodman, M. J. Am. Chem. Soc. 1985,107, 4008. https://doi.org/10.1021/ja00299a041
  25. Berman, J. M.; Goodman, M.; Nguyen, T. M. D.; Schiller P. W.Biochem. Biophys. Res. Comm. 1983, 155, 864.
  26. Goodman, M.; Ro, S.; Yamazaki, T.; Spencer, J. R.; Toy, A.;Huang, Z.; He, Y.; Reisine, T. Bioorg. Khim. 1992, 18, 1375.
  27. Yamazaki, T.; Mierke, D. F.; Said-Nejad, O. E.; Felder, E. R.;Goodman, M. Int. J. Pept. Pro. Res. 1992, 39, 161.
  28. Svensson, C. I.; Rew, Y.; Malkmus, S.; Schiller, P. W.; Taulane, J. P.; Goodman, M.; Yaksh, T. L. J. Pharm. Exp. Ther. 2003, 304, 827. https://doi.org/10.1124/jpet.102.039750
  29. Rew, Y.; Malkmus, S.; Svensson, C.; Yaksh, T. L.; Chung N. N.;Schiller, P. W.; Cassel, j. A.; DeHaven, R. N.; Taulane, J. P.; Goodman,M. J. Med. Chem. 2002, 45, 3746. https://doi.org/10.1021/jm020108k
  30. Schiller, P. W.; Nguyen, T. M.; Maziak, L. A.; Wilkes, B. C.; Lemieux,C. J. Med. Chem. 1987, 30, 2094. https://doi.org/10.1021/jm00394a027
  31. Mosberg, H. I.; Omnaas, J. R.; Medzihradsky, J.; Smith, C. B. Life Sci. 1988, 43, 1013. https://doi.org/10.1016/0024-3205(88)90547-4
  32. Ciarkowski, J.; Zieleniak, A.; Rodziewicz-Motowidlo, S.; Rusak,L.; Chung, N. N.; Czaplewski ,C.; Witkowska, E.; Schiller, P. W.;Izdebski, J. Adv. Exp. Med. Biol. 2009, 611, 491. https://doi.org/10.1007/978-0-387-73657-0_212
  33. Rew, Y.; Goodman, M. J. Org. Chem. 2002, 67, 8820. https://doi.org/10.1021/jo020447l
  34. Berezowska, I.; Chung, N. N.; Lemieux, C.; Wilkes, B. C.; Schiller,P. W. J. Med. Chem. 2007, 50, 1414. https://doi.org/10.1021/jm061294n
  35. Berezowska, I.; Chung, N. N.; Lemieux, C.; Wilkes, B. C.; Schiller,P. W. Acta Biochim. Pol. 2006, 53, 73.
  36. Goodman, M.; Ro, S.; George, O.; Yamazaki, T.; Polinsky, A.NIDA Res. Monog. 1993, 134, 195.
  37. Wilkes, B. C.; Schiller, P. Bioplymers 1990, 29, 89. https://doi.org/10.1002/bip.360290113
  38. Hong, N. J.; Jin, D. H.; Hong, E. Y. Bull. Korean Chem. Soc. 2009,30, 599. https://doi.org/10.5012/bkcs.2009.30.3.599
  39. Paton, W. P. Br. J. Pharmacol. 1957, 12, 119.
  40. Henderson, G.; Hughes, J.; Kosterlitz, H. W., Jr. J. Pharmacol.1971, 46, 764.
  41. Weltrowska, G.; Nguyen, T.; Lemieux, C.; Chung, N.; Schiller, P.Chem. Biol. Drug Desig. 2008, 72, 337. https://doi.org/10.1111/j.1747-0285.2008.00720.x
  42. Witkowska, R.; Chung, N.; Schiller, P.; Zabrocki, J. J. Pept. Sci.2005, 11, 361. https://doi.org/10.1002/psc.620
  43. Chen, H.; Chung, N.; Lemieux, C.; Zelent, B.; Wilkes, C.; Schiller, P. Pept. Sci. 2005, 80, 325. https://doi.org/10.1002/bip.20200
  44. Yatsh, T.; Jang, J. D.; Braun, K.; Goodman, M. Life Sci. 1991, 48,623. https://doi.org/10.1016/0024-3205(91)90537-L
  45. Chang, J. K.; Fong, T. W. Life Sci. 1976, 18, 1473. https://doi.org/10.1016/0024-3205(76)90366-0
  46. Wilkes, B. C.; Schiller, P. W. Biopolymers 1987, 26, 1431. https://doi.org/10.1002/bip.360260817
  47. Shenderovich, M. D.; Nikiforovich, G. V.; Golbraikh, A. A. Int. J. Pept. Pro. Res. 1991, 37, 241.
  48. Mierke, D. F.; Luccietto, P.; Schiller, P. W.; Goodman, M. Biopolymers1987, 26, 1573. https://doi.org/10.1002/bip.360260909
  49. Said-Nejad, O. E.; Felder, E. R.; Mierke, D. F.; Yamazaki, T.;Schiller, P. W. Inter. J. Pept. Pro. Res. 1992, 39, 145.

Cited by

  1. Activity Profiles of Linear, Cyclic Monomer and Cyclic Dimer of Enkephalin vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.261
  2. -diaminoalkyl Derivatives vol.2013, pp.24, 2013, https://doi.org/10.1002/ejoc.201300442
  3. Combined Role of Two Tryptophane Residues of α-Factor Pheromone vol.34, pp.2, 2013, https://doi.org/10.5012/bkcs.2013.34.2.600
  4. Highly Active Analogs of α-Factor and Their Activities Against Saccharomyces cerevisiae vol.35, pp.5, 2014, https://doi.org/10.5012/bkcs.2014.35.5.1365
  5. vol.36, pp.7, 2015, https://doi.org/10.1002/bkcs.10367
  6. Development of a Highly Active Fluorescence-Based Detector for Yeast G Protein-Coupled Receptor Ste2p vol.28, pp.10, 2010, https://doi.org/10.4014/jmb.1805.04045