DOI QR코드

DOI QR Code

Kinetic Studies of the Solvolyses of 2,2,2-Trichloro-1,1-Dimethylethyl Chloroformate

  • Koh, Han-Joong (Department of Science Education, Jeonju National University of Education) ;
  • Kang, Suk-Jin (Department of Science Education, Jeonju National University of Education) ;
  • Kevill, Dennis N. (Department of Chemistry and Biochemistry, Northern Illinois University)
  • Published : 2010.04.20

Abstract

The rate constants of solvolyses of 2,2,2-trichloro-1,1-dimethylethyl chloroformate ($\underline{I}$) in 33 solvents can be well correlated using the extended Grunwald-Winstein equation, with incorporation of the $N_T$ solvent nucleophilicity scale and the $Y_{Cl}$ solvent ionizing scale, with sensitivities towards changes in the scale having values of $1.42\;{\pm}\;0.09$ for l and $0.39\;{\pm}\;0.05$ for m, respectively. The activation enthalpies are ${\Delta}H^{\neq}\;=\;12.3$ to $14.5\;kcal{\cdot}mol^{-1}$ and the activation entropies are -28.2 to $-35.5\;cal{\cdot}mol^{-1}{\cdot}K^{-1}$, consistent with the proposed bimolecular reaction mechanism. The kinetic solvent isotope effect of 2.14 in MeOH/MeOD is in accord with a bimolecular mechanism, probably assisted by general-base catalysis.

Keywords

References

  1. Bender, M. L. Chem. Rev. 1960, 60, 53. https://doi.org/10.1021/cr60203a005
  2. The Chemistry of the Carbonyl Group; Patai, S., Ed.; Interscience: New York, 1966and 1970; Vols. 1 and 2.
  3. Jencks, W. P. Catalysis in Chemistry and Enzymology; McGraw-Hill: New York, 1968.
  4. Jencks, W.P. Acc. Chem. Res. 1980, 13, 161. https://doi.org/10.1021/ar50150a001
  5. Guthrie, J. P. Acc. Chem. Res.1983, 16, 22. https://doi.org/10.1021/ar00085a004
  6. Baer, S.; Brinkman, E. A.; Brauman, J. I. J. Am. Chem. Soc. 1991, 113, 805. https://doi.org/10.1021/ja00003a012
  7. Williams, A. Chem. Soc. Rev. 1994,23, 93. https://doi.org/10.1039/cs9942300093
  8. Yamabe, S.; Minato, T. J. Org. Chem. 1983, 48, 2972. https://doi.org/10.1021/jo00166a007
  9. Blake, J. F.; Jorgensen, W. L. J. Am. Chem. Soc. 1987, 109, 3856. https://doi.org/10.1021/ja00247a007
  10. Madura, J. D.; Jorgensen, W. L. J. Am. Chem. Soc. 1986, 108,2517. https://doi.org/10.1021/ja00270a005
  11. Park, Y. S.; Kim, C. K.; Lee, B. S.; Lee, I.; Lim, W. M.;Kim, W. K. J. Phys. Org. Chem. 1995, 8, 325. https://doi.org/10.1002/poc.610080502
  12. Bentley, T. W.; Jones, R. O. J. Chem. Soc., Perkin Trans. 21993, 2351.
  13. Bentley, T. W.; Shim, C. S. J. Chem. Soc., Perkin Trans 2 1993, 1659.
  14. Song, B. D.; Jencks, W. P. J. Am. Chem. Soc. 1989, 111, 8470. https://doi.org/10.1021/ja00204a021
  15. Kivinen, A. The Chemistry of Acyl Halides; Patai, S., Ed.; Interscience: New York, 1972.
  16. Queen, A.Can. J. Chem. 1967, 45, 1619. https://doi.org/10.1139/v67-264
  17. Kim, S. C.; Song, H. S.; Lee, I. J. Korean Chem. Soc. 1979, 23, 368.
  18. Johnson, S. L. Adv. Phys. Org. Chem. 1967, 5, 237. https://doi.org/10.1016/S0065-3160(08)60312-3
  19. D’Souza, M. J.; Kevill, D. N.; Bentley, T. W.; Devaney, A. C.J. Org. Chem. 1995, 60, 1632. https://doi.org/10.1021/jo00111a022
  20. Bond, P. M.; Castro, E. A.; Moodie, R. B. J. Chem. Soc., Perkin Trans. 2 1976, 68.
  21. Palling, D. J.; Jencks, W. P. J. Am. Chem. Soc. 1984, 106, 4869. https://doi.org/10.1021/ja00329a040
  22. Kyong, J. B.; Yoo, J. S.; Kevill, D. N. J. Org. Chem. 2003, 68, 3425. https://doi.org/10.1021/jo0207426
  23. Faurholt, C.; Gjaldbaek, J. C. Dansk. Tids. Farm 1945, 19, 255.
  24. Faurholt, C.; Gjaldbaek, J. C. Chem. Abstr. 1946, 40, 513.
  25. Kevill, D. N.; D’Souza, M. J. J. Chem. Soc., Perkin Trans. 2 2002,240.
  26. Grunwald, E.; Winstein, S. J. Am. Chem. Soc. 1948, 70, 846. https://doi.org/10.1021/ja01182a117
  27. Bentley, T. W.; Llewellyn, G. Prog. Phys. Org. Chem. 1990,17, 121. https://doi.org/10.1002/9780470171967.ch5
  28. Kevill, D. N.; D’Souza, M. J. J. Chem. Res. Synop.1993, 174.
  29. Bentley, T. W.; Carter, G. E. J. Am. Chem. Soc.1982, 104, 5741. https://doi.org/10.1021/ja00385a031
  30. Koo, I. S.; Bentley, T. W.; Kang, D. H.; Lee, I.J. Chem. Soc., Perkin Trans. 2 1991, 296.
  31. Winstein, S.; Grunwald,E.; Jones, H. W. J. Am. Chem. Soc. 1951, 73, 2700. https://doi.org/10.1021/ja01150a078
  32. Kevill,D. N.; Anderson, S. W. J. Org. Chem. 1991, 56, 1845. https://doi.org/10.1021/jo00005a034
  33. Kevill,D. N. In Advances in Quantitative Structure-Property Relationships;Charton, M., Ed.; JAI Press: Greenwich, CT, 1996; Vol. 1,pp 81-115.
  34. Castro, E. A.; Ibanez, F.; Salas, M.; Santos, J. G. J. Org. Chem.1991, 56, 4819. https://doi.org/10.1021/jo00016a002
  35. Castro, E. A.; Salas, M.; Santos, J. G. J. Org. Chem. 1994, 59, 30. https://doi.org/10.1021/jo00080a008
  36. Chrystiuk, E.; Williams, A. J. Am. Chem. Soc. 1987, 109, 3040. https://doi.org/10.1021/ja00244a028
  37. Leffler, J. E.; Grunwald, E. Rates and Equilibria of Organic Reactions;Wiley: New York, 1963; p 222.
  38. Choppin, A. R.; Rodgers, J. W. J. Am. Chem. Soc. 1948, 70, 2967. https://doi.org/10.1021/ja01189a040
  39. Kevill, D. N.; Weitl, F. L. J. Am. Chem. Soc. 1968, 90, 6416. https://doi.org/10.1021/ja01025a030
  40. Kevill, D. N.; Kyong, J. B.; Weitl, F. L. J. Org. Chem. 1990, 55,4304. https://doi.org/10.1021/jo00301a019
  41. Bentley, T. W.; Ebdon, D. N. J. Phys. Org. Chem. 2001, 14, 759. https://doi.org/10.1002/poc.425
  42. Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. J. Org. Chem. 1998,63, 9834. https://doi.org/10.1021/jo9814905
  43. Kevill, D. N.; D’Souza, M. J. J. Chem. Soc., Perkin Trans. 2 1997,1721.
  44. Kyong, J. B.; Won, H.; Kevill, D. N. Int. J. Mol. Sci. 2005, 6, 87. https://doi.org/10.3390/i6010087
  45. Lee, I.; Sung, D. D.; Uhm, T. S.; Ryu, Z. H. J. Chem. Soc., Perkin Trans. 2 1989, 1697.
  46. Yew, K. H.; Koh, H. J.; Lee, H.W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1995, 2263.
  47. Guha,A. K.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1999,765.
  48. Hoque, Md. E. U.; Dey, N. K.; Guha, A. K.; Kim, C. K.;Lee, B.-S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 1797. https://doi.org/10.5012/bkcs.2007.28.10.1797
  49. Hoque, Md. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2007,28, 936. https://doi.org/10.5012/bkcs.2007.28.6.936
  50. Kevill, D. N.; Miller, B. J. Org. Chem. 2002, 67, 7399. https://doi.org/10.1021/jo020467n
  51. Koo, I. S.; Yang, K. Y.; Kang, K. D.; Lee, I.; Bentley, T. W,J. Chem. Soc., Perkin Trans. 2 1998, 1179.
  52. D’Souza, M. J.;Shuman, K. E.; Carter, S. E.; Kevill, D. N. Int. J. Mol. Sci. 2008,9, 2231. https://doi.org/10.3390/ijms9112231
  53. Kyong, J. B.; Park, B. C.; Kim, C. B.; Kevill, D. N. J. Org. Chem. 2000, 65, 8051. https://doi.org/10.1021/jo005630y
  54. Kevill, D. N.; D’Souza, M. J. Collect. Czech. Chem. Commun. 1999, 64, 1790. https://doi.org/10.1135/cccc19991790
  55. Bentley, T. W.; Jones,R. O.; Koo, I. S. J. Chem. Soc. Perkin Trans. 2 1994, 753.
  56. Kevill,D. N.; D’Souza. M. J. J. Phys. Org. Chem. 2002, 15, 881. https://doi.org/10.1002/poc.569
  57. Kyong, J. B.; Won, H. S.; Lee, Y. H.; Kevill, D. N. Bull. Korean Chem. Soc. 2005, 26, 661. https://doi.org/10.5012/bkcs.2005.26.4.661
  58. Kevill, D. N.; Kim, J. C.; Kyong, J. B. J. Chem. Res., Synop. 1999,150.
  59. Kevill, D. N.; D’Souza, M. J. J. Org. Chem. 1998, 63, 2120. https://doi.org/10.1021/jo9714270
  60. Kyong, J. B.; Ryu, S. H.; Kevill, D. N. Int. J. Mol. Sci. 2006, 7, 186. https://doi.org/10.3390/i7070186
  61. Kyong, J. B.; Rhu, C. J.; Kim, Y. G.; Kevill, D. N. J. Phys. Org. Chem. 2007, 20, 525. https://doi.org/10.1002/poc.1194
  62. Lee, I.; Koh, H. J.; Park, Y. S.; Lee, H. W, J. Chem. Soc., Perkin Trans. 2 1993, 1575.

Cited by

  1. Correlation of the Rates of Solvolysis of Neopentyl Chloroformate—A Recommended Protecting Agent vol.12, pp.12, 2011, https://doi.org/10.3390/ijms12021161
  2. Detailed analysis for the solvolysis of isopropenyl chloroformate vol.2, pp.2, 2011, https://doi.org/10.5155/eurjchem.2.2.130-135.405
  3. Use of Linear Free Energy Relationships (LFERs) to Elucidate the Mechanisms of Reaction of a γ-Methyl-β-alkynyl and an ortho-Substituted Aryl Chloroformate Ester vol.13, pp.12, 2012, https://doi.org/10.3390/ijms13010665
  4. Correlation of the rates of solvolysis of tert-butyl chlorothioformate and observations concerning the reaction mechanism vol.3, pp.3, 2012, https://doi.org/10.5155/eurjchem.3.3.267-272.624
  5. -Chlorophenyl Chlorothionoformate Esters vol.2013, pp.2090-9071, 2013, https://doi.org/10.1155/2013/248534
  6. Kinetic Study on Solvolysis of 2-Methylfuran-3-carbonyl Chloride in Binary Solvent Mixtures vol.38, pp.3, 2017, https://doi.org/10.1002/bkcs.11084
  7. Mechanistic Study of the Solvolysis of Piperidine-1-sulfonyl chloride in Binary Solvent Mixtures vol.38, pp.9, 2017, https://doi.org/10.1002/bkcs.11217
  8. Influence of Sulfur for Oxygen Substitution in the Solvolytic Reactions of Chloroformate Esters and Related Compounds vol.15, pp.10, 2014, https://doi.org/10.3390/ijms151018310
  9. Calculated Third Order Rate Constants for Interpreting the Mechanisms of Hydrolyses of Chloroformates, Carboxylic Acid Halides, Sulfonyl Chlorides and Phosphorochloridates vol.16, pp.12, 2015, https://doi.org/10.3390/ijms160510601
  10. Kinetic evaluation of the solvolysis of isobutyl chloro- and chlorothioformate esters vol.7, pp.None, 2010, https://doi.org/10.3762/bjoc.7.62
  11. Rate-Product Correlations for the Solvolysis of 5-Nitro-2-Furoyl Chloride vol.33, pp.10, 2010, https://doi.org/10.5012/bkcs.2012.33.10.3293
  12. LFER Studies Evaluating Solvent Effects on an α-Chloro-and two β,β,β-Trichloro-Ethyl Chloroformate Esters vol.2, pp.2, 2010, https://doi.org/10.13179/canchemtrans.2014.02.02.0093