DOI QR코드

DOI QR Code

Differentiation of Roots of Glycyrrhiza Species by 1H Nuclear Magnetic Resonance Spectroscopy and Multivariate Statistical Analysis

  • Published : 2010.04.20

Abstract

To classify Glycyrrhiza species, samples of different species were analyzed by $^1H$ NMR-based metabolomics technique. Partial least squares discriminant analysis (PLS-DA) was used as the multivariate statistical analysis of the 1H NMR data sets. There was a clear separation between various Glycyrrhiza species in the PLS-DA derived score plots. The PLS-DA model was validated, and the key metabolites contributing to the separation in the score plots of various Glycyrrhiza species were lactic acid, alanine, arginine, proline, malic acid, asparagine, choline, glycine, glucose, sucrose, 4-hydroxy-phenylacetic acid, and formic acid. The compounds present at relatively high levels were glucose, and 4-hydroxyphenylacetic acid in G. glabra; lactic acid, alanine, and proline in G. inflata; and arginine, malic acid, and sucrose in G. uralensis. This is the first study to perform the global metabolomic profiling and differentiation of Glycyrrhiza species using $^1H$ NMR and multivariate statistical analysis.

Keywords

References

  1. Mauricio, I.; Francischetti, B.; Monteiro, R. Q.; Guimaraes, J. A. Biochem. Biophys. Res. Commun. 1997, 235, 259. https://doi.org/10.1006/bbrc.1997.6735
  2. Dong, S.; Inoue, A.; Zhu, Y.; Tanji, M.; Kiyama, R. Food Chem. Toxicol. 2007, 45, 2470. https://doi.org/10.1016/j.fct.2007.05.031
  3. Kim, I. G.; Kang, S. C.; Kim, K. C.; Choung, E. S.; Zee, O. P. Environ. Toxicol. Pharmacol. 2008, 25, 75. https://doi.org/10.1016/j.etap.2007.09.002
  4. Won, S. R.; Kim, S. K.; Kim, Y. M.; Lee, P. H.; Ryu, J. H.; Kim, J.W.; Rhee, H. I. Food Res. Int. 2007, 40, 1046. https://doi.org/10.1016/j.foodres.2007.05.005
  5. Schambelan, M. Steroid 1994, 59, 127. https://doi.org/10.1016/0039-128X(94)90089-2
  6. Fiore, C.; Eisenhut, M.; Krausse, R.; Ragazzi, E.; Pellati, D.; Armanini,D.; Bielenberg, J. Phytother. Res. 2008, 22, 141. https://doi.org/10.1002/ptr.2295
  7. Hayashi, H.; Hiraoka, N.; Ikeshiro, Y.; Yamamoto, H. Plant Sci.1996, 116, 233. https://doi.org/10.1016/0168-9452(96)04387-7
  8. Nomura, T.; Fukai, T.; Akiyama, T. Pure Appl. Chem. 2002, 74,1199. https://doi.org/10.1351/pac200274071199
  9. Kinoshita, T.; Tamura, Y.; Mizutani, K. Chem. Pharm. Bull. 2005,53, 847. https://doi.org/10.1248/cpb.53.847
  10. Asl, M. N.; Hosseinzadeh, H. Phytother. Res. 2008, 22, 709. https://doi.org/10.1002/ptr.2362
  11. The United States Pharmacopeia; The United States Pharmacopeial Convention: Rockville, U. S. A., 2007; p 955.
  12. The Japanese Pharmacopeia; Yakuji Nippo Ltd.: Tokyo, Japan,2006; p 932.
  13. The Korean Pharmacopeia; Shinil Books Company: Seoul, Korea,2008; p 903.
  14. Pharmacopoeia of the People’s Republic of China; People’s Medical Publishing House: Beijing, China, 2005; p 207.
  15. Ott, K. H.; Aranibar, N.; Singh, B.; Stockton, G. W. Phytochemistry2003, 62, 971. https://doi.org/10.1016/S0031-9422(02)00717-3
  16. Tweeddale, H.; Notley-McRobb, L.; Ferenci, T. J. Bacteriol. 1998,180, 5109.
  17. Consonni, R.; Cagliani, L. R.; Benevelli, F.; Spraul, M.; Humpfer,E.; Stocchero, M. Anal. Chim. Acta 2008, 611, 31. https://doi.org/10.1016/j.aca.2008.01.065
  18. Tarachiwin, L.; Ute, K.; Kobayashi, A.; Fukusaki, E. J. Agric. Food Chem. 2007, 55, 9330. https://doi.org/10.1021/jf071956x
  19. Tarachiwin, L.; Katoh, A.; Ute, K.; Fukusaki, E. J. Pharm. Biomed. Anal. 2008, 48, 42. https://doi.org/10.1016/j.jpba.2008.04.025
  20. Whang, W. K.; Lee, M. W.; Choi, H. K. Bull. Korean Chem. Soc.2007, 28, 557. https://doi.org/10.5012/bkcs.2007.28.4.557
  21. Barker, M.; Rayens, W. J. Chemometr. 2003, 17, 166. https://doi.org/10.1002/cem.785
  22. Wishart, D. S. Trends Food Sci. Tech. 2008, 19, 482. https://doi.org/10.1016/j.tifs.2008.03.003
  23. Westerhuis, J. A.; Hoefsloot, H. C. J.; Smit, S.; Vis, D. J.; Smilde,A. K.; Van Velzen, E. J. J.; Van Duijnhoven, J. P. M.; Van Dorsten,F. A. Metabolomics 2008, 4, 81. https://doi.org/10.1007/s11306-007-0099-6
  24. Eriksson, L.; Johansson, E.; Kettaneh-Wold, N.; Trygg, J.; Wikstrom, C.; Wold, S. Multi- and Megavariate Data Analysis Part I: Basic Principles and Applications; Umetrics, Inc.: Umea, Sweden,2006; p 86.
  25. Lu, X.; Zhao, X.; Bai, C.; Zhao, C.; Guo, L.; Xu, G. J. Chromatogr. B 2008, 866, 64. https://doi.org/10.1016/j.jchromb.2007.10.022
  26. Woo, H. M.; Kim, K. M.; Choi, M. H.; Jung, B. H.; Lee, J. G.;Kong, G.; Nam, S. J.; Kim, S. H.; Bai, S. W.; Chung, B. C. Clin. Chim. Acta 2009, 400, 63. https://doi.org/10.1016/j.cca.2008.10.014

Cited by

  1. 1H-nuclear magnetic resonance-based metabonomic analysis of brain in rhesus monkeys with morphine treatment and withdrawal intervention vol.90, pp.11, 2012, https://doi.org/10.1002/jnr.23109
  2. Orthogonal Analysis Underscores the Relevance of Primary and Secondary Metabolites in Licorice vol.77, pp.8, 2014, https://doi.org/10.1021/np5001945
  3. Terpenoid and flavonoid spectrum of in vitro cultures of Glycyrrhiza glabra revealed high chemical heterogeneity: platform to understand biosynthesis vol.124, pp.3, 2016, https://doi.org/10.1007/s11240-015-0910-4
  4. Development of cleaved amplified polymorphic sequence (CAPS) and high-resolution melting (HRM) markers from the chloroplast genome of Glycyrrhiza species vol.8, pp.5, 2018, https://doi.org/10.1007/s13205-018-1245-8
  5. Comparative metabolite profiling and fingerprinting of medicinal licorice roots using a multiplex approach of GC-MS, LC-MS and 1D NMR techniques vol.76, pp.None, 2012, https://doi.org/10.1016/j.phytochem.2011.12.010
  6. Proton Nuclear Magnetic Resonance Spectrometry-Based Metabolic Characterization of Panax Notoginseng Roots vol.48, pp.8, 2010, https://doi.org/10.1080/00032719.2014.979356
  7. Metabolite Profiling and Classification of DNA-Authenticated Licorice Botanicals vol.78, pp.8, 2010, https://doi.org/10.1021/acs.jnatprod.5b00342