DOI QR코드

DOI QR Code

Laser-Induced Formation and Disintegration of Gold Nanopeanuts and Nanowires

  • Park, Jung-Shin (Department of Chemistry, Center for Photofunctional Energy Materials, Dankook University) ;
  • Yoon, Jun-Hee (Department of Chemistry, Center for Photofunctional Energy Materials, Dankook University) ;
  • Kim, Hyung-Jun (Department of Chemistry, Center for Photofunctional Energy Materials, Dankook University) ;
  • Huh, Young-Duk (Department of Chemistry, Center for Photofunctional Energy Materials, Dankook University) ;
  • Yoon, Sang-Woon (Department of Chemistry, Center for Photofunctional Energy Materials, Dankook University)
  • Published : 2010.04.20

Abstract

We report the laser-induced formation of peanut-shaped gold nanoparticles (Au nanopeanuts) and gold nanowires (AuNWs), and their morphological properties. Pulsed laser irradiation of citrate-capped gold nanoparticles at 532 nm induces fragmentation, spherical growth, the formation of Au nanopeanuts, and the formation of AuNWs, sequentially. High-resolution transmission electron microscopy images reveal that the Au nanopeanuts are formed by instantaneous fusion of spherical nanoparticles in random orientation by laser heating. Furthermore, Au nanopeanuts are bridged in a linear direction to form AuNWs by an amorphous accumulation of gold atoms in the junction. The laser-produced Au nanopeanuts and AuNWs slowly disintegrate, restoring the spherical shape of the original Au nanoparticles when the laser irradiation is stopped. The addition of citrate effectively prevents them from transforming back to the nanospheres.

Keywords

References

  1. Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A. Acc. Chem. Res. 2008, 41, 1578. https://doi.org/10.1021/ar7002804
  2. Jain, P. K.; Lee, K. S.; El-Sayed, M. A. J. Phys. Chem. B 2006, 110,7238. https://doi.org/10.1021/jp057170o
  3. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 668. https://doi.org/10.1021/jp026731y
  4. Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera,B.; Price, R. E.; Hazle, J. D.; Halas, N. J.; West, J. L. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 13549. https://doi.org/10.1073/pnas.2232479100
  5. Huang, W.; Qian, W.; El-Sayed, M. A. J. Am. Chem. Soc. 2006,128, 13330. https://doi.org/10.1021/ja064328p
  6. El-Sayed, I. H.; Huang, X.; El-Sayed, M. A. Cancer Lett. 2006,239, 129. https://doi.org/10.1016/j.canlet.2005.07.035
  7. O'Neal, D. P.; Hirsch, L. R.; Halas, N. J.; Payne, J. D.; West, J. L.Cancer Lett. 2004, 209, 171. https://doi.org/10.1016/j.canlet.2004.02.004
  8. Loo, C. A.; Lowery, A.; Halas, N.; West, J.; Drezek, R. Nano Lett.2005, 5, 709. https://doi.org/10.1021/nl050127s
  9. Wang, Y.; Xie, X.; Wang, X.; Ku, G.; Gill, K. L.; O'Neal, D. P.;Stoica, G.; Wang, L. V. Nano Lett. 2004, 4, 1689. https://doi.org/10.1021/nl049126a
  10. Gobin, A. M.; Lee, M. H.; Halas, N. J.; James, W. D.; Drezek, R.A.; West, J. L. Nano Lett. 2007, 7, 1929. https://doi.org/10.1021/nl070610y
  11. Loo, C.; Hirsch, L.; Lee, M. H.; Chang, E.; West, J.; Halas, N.; Drezek,R. Opt. Lett. 2005, 30, 1012. https://doi.org/10.1364/OL.30.001012
  12. Camden, J. P.; Dieringer, J. A.; Zhao, J.; Van Duyne, R. P. Acc. Chem. Res. 2008, 41, 1653. https://doi.org/10.1021/ar800041s
  13. Moskovits, M. Rev. Mod. Phys. 1985, 57, 783. https://doi.org/10.1103/RevModPhys.57.783
  14. Nie, S.; Emory, S. R. Science 1997, 275, 1102. https://doi.org/10.1126/science.275.5303.1102
  15. Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.;Dasari, R. R.; Feld, M. S. Phys. Rev. Lett. 1997, 78, 1667. https://doi.org/10.1103/PhysRevLett.78.1667
  16. Cao, Y. C.; Jin, R.; Mirkin, C. A. Science 2002, 297, 1536. https://doi.org/10.1126/science.297.5586.1536
  17. Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chem. Rev.2005, 105, 1025. https://doi.org/10.1021/cr030063a
  18. Daniel, M.-C.; Astruc, D. Chem. Rev. 2004, 104, 293. https://doi.org/10.1021/cr030698+
  19. Wang, Z. L.; Petroski, J. M.; Green, T. C.; El-Sayed, M. A. J. Phys. Chem. B 1998, 102, 6145. https://doi.org/10.1021/jp981594j
  20. Jana, N. R.; Gearheart, L.; Murphy, C. J. J. Phys. Chem. B 2001,105, 4065. https://doi.org/10.1021/jp0107964
  21. Skrabalak, S. E.; Chen, J.; Sun, Y.; Lu, X.; Au, L.; Cobley, C. M.;Xia, Y. Acc. Chem. Res. 2008, 41, 1587. https://doi.org/10.1021/ar800018v
  22. Bae, Y.; Kim, N. H.; Kim, M.; Lee, K. Y.; Han, S. W. J. Am. Chem. Soc. 2008, 130, 5432. https://doi.org/10.1021/ja800898v
  23. Lee, J.; Hasan, W.; Stender, C. L.; Odom, T. W. Acc. Chem. Res.2008, 41, 1762. https://doi.org/10.1021/ar800126p
  24. Duffus, C.; Camp, P. J.; Alexander, A. J. J. Am. Chem. Soc. 2009,131, 11676. https://doi.org/10.1021/ja905232m
  25. Klajn, R.; Wesson, P. J.; Bishop, K. J. M.; Grzybowski, B. A. Angew. Chem., Int. Ed. 2009, 48, 1. https://doi.org/10.1002/anie.200890275
  26. Link, S.; Burda, C.; Mohamed, M. B.; Nikoobakht, B.; El-Sayed,M. A. J. Phys. Chem. A 1999, 103, 1165. https://doi.org/10.1021/jp983141k
  27. Link, S.; Burda, C.; Nikoobakht, B.; El-Sayed, M. A. J. Phys. Chem. B 2000, 104, 6152. https://doi.org/10.1021/jp000679t
  28. Kurita, H.; Takami, A.; Koda, S. Appl. Phys. Lett. 1998, 72, 789. https://doi.org/10.1063/1.120894
  29. Mafune, F.; Kohno, J.-y.; Takeda, Y.; Kondow, T. J. Phys. Chem. B 2002, 106, 7575. https://doi.org/10.1021/jp020577y
  30. Mafune, F.; Kohno, J.-y.; Takeda, Y.; Kondow, T. J. Phys. Chem. B 2002, 106, 8555. https://doi.org/10.1021/jp020786i
  31. Mafune, F.; Kohno, J.-y.; Takeda, Y.; Kondow, T. J. Phys. Chem. B 2003, 107, 12589. https://doi.org/10.1021/jp030173l
  32. Takami, A.; Kurita, H.; Koda, S. J. Phys. Chem. B 1999, 103, 1226. https://doi.org/10.1021/jp983503o
  33. Ahmadi, T. S.; Logunov, S. L.; El-Sayed, M. A. J. Phys. Chem.1996, 100, 8053. https://doi.org/10.1021/jp960484e
  34. Hodak, J. K.; Martini, I.; Hartland, G. V. J. Phys. Chem. B 1998,102, 6958. https://doi.org/10.1021/jp9809787
  35. Perner, M.; Bost, P.; Lemmer, U.; Plessen, G. v.; Feldmann, J.;Becker, U.; Mennig, M.; Schmitt, M.; Schmidt, H. Phys. Rev. Lett.1997, 78, 2192. https://doi.org/10.1103/PhysRevLett.78.2192
  36. Peng, Z.; Walther, T.; Kleinermanns, K. J. Phys. Chem. B 2005,109, 15735. https://doi.org/10.1021/jp051849a
  37. Turkevich, J.; Stevenson, P. C.; Hillier, J. Discuss. Faraday Soc. 1951, 11, 55. https://doi.org/10.1039/df9511100055
  38. Alvarez, M. M.; Khoury, J. T.; Schaaff, T. G.; Shafigullin, M. N.;Vezmar, I.; Whetten, R. L. J. Phys. Chem. B 1997, 101, 3706. https://doi.org/10.1021/jp962922n
  39. Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.;Gou, L.; Hunyadi, S. E.; Li, T. J. Phys. Chem. B 2005, 109, 13857. https://doi.org/10.1021/jp0516846
  40. Link, S.; Mohamed, M. B.; El-Sayed, M. A. J. Phys. Chem. B 1999,103, 3073. https://doi.org/10.1021/jp990183f
  41. Mafune, F.; Kohno, J.-y.; Takeda, Y.; Kondow, T. J. Phys. Chem. B 2001, 105, 9050. https://doi.org/10.1021/jp0111620
  42. JCPDS database (04-0784, 02-1095, or 01-1174)
  43. Lofton, C.; Sigmund, W. Adv. Funct. Mater. 2005, 15, 1197. https://doi.org/10.1002/adfm.200400091

Cited by

  1. Size and Shape Homogenization of Ag Nanoparticles by Laser Irradiation vol.32, pp.11, 2011, https://doi.org/10.5012/bkcs.2011.32.11.4113
  2. Au, Ge, and AuGe nanoparticles fabricated by laser ablation vol.14, pp.2, 2012, https://doi.org/10.1007/s11051-011-0654-y
  3. The effect of magnetic fields on the products of laser ablation vol.122, pp.2, 2016, https://doi.org/10.1007/s00339-016-9636-3
  4. Spatially Controlled SERS Patterning Using Photoinduced Disassembly of Gelated Gold Nanoparticle Aggregates vol.26, pp.23, 2010, https://doi.org/10.1021/la103599q
  5. Molecular Sensing Efficiency of Gold-Silver Alloy Nanowires vol.32, pp.4, 2010, https://doi.org/10.5012/bkcs.2011.32.4.1346
  6. Ultrasonic-Enhanced Fabrication of Metal Nanoparticles by Laser Ablation in Liquid vol.59, pp.16, 2010, https://doi.org/10.1021/acs.iecr.9b06384