A Global Self-Position Localization in Wide Environments Using Gradual RANSAC Method

점진적 RANSAC 방법을 이용한 넓은 환경에서의 대역적 자기 위치 추정

  • Received : 2010.08.03
  • Accepted : 2010.10.29
  • Published : 2010.10.30

Abstract

A general solution in global self-position location of robot is to generate multiple hypothesis in self-position of robot, which is to look for the most positive self-position by evaluating each hypothesis based on features of observed landmark. Markov Localization(ML) or Monte Carlo Localization(MCL) to be the existing typical method is to evaluate all pairs of landmark features and generated hypotheses, it can be said to be an optimal method in sufficiently calculating resources. But calculating quantities was proportional to the number of pairs to evaluate in general, so calculating quantities was piled up in wide environments in the presence of multiple pairs if using these methods. First of all, the positive and promising pairs is located and evaluated to solve this problem in this paper, and the newly locating method to make effective use of calculating time is proposed. As the basic method, it is used both RANSAC(RANdom SAmple Consensus) algorithm and preemption scheme to be efficiency method of RANSAC algorithm. The calculating quantity on each observation of robot can be suppressed below a certain values in the proposed method, and the high location performance can be determined by an experimental on verification.

로봇의 대역적 자기 위치 추정에서의 일반적인 해법은 로봇의 자기 위치에서 복수의 가설을 생성하고, 관측된 랜드마크의 특정을 기초로 각 가설을 평가하여 가장 확실한 자기 위치를 구하는 것이다. 기존의 대표적인 방법인 ML이나 MCL은 랜드마크의 특징과 생성된 가설의 모든 조합을 평가하는 방법으로서 충분한 계산 자원에서는 최적의 방법이라 할 수 있다. 그러나, 일반적으로 계산량은 평가할 조합의 수에 비례하므로 다수의 조합이 존재하는 넓은 환경에서는 이러한 방법은 계산량이 아주 많아진다. 이러한 문제를 해결하기 위하여 본 논문에서는 확실하고 유망한 조합을 우선적으로 선택 평가하는 것으로, 계산시간을 효율적으로 이용하는 새로운 추정방법을 제안한다. 그 기본이 되는 방법으로는 RANSAC 알고리즘과 RANSAC 알고리즘의 효율화 방법인 Preemption scheme을 이용한다. 제안된 방법은 로봇이 관측할 때마다 계산량을 일정치 이하로 억제할 수가 있고, 또한 검증 실험에서 높은 추정 성능을 확인할 수 있었다.

Keywords

References

  1. D. C. K Yuen and B. A MacDonald, "Vision-based localization algorithm based on landmark matching, triangulation, reconstruction, and comparison," IEEE Trans. Robotics, vol. 21, no. 2, pp. 217-226. 2005. https://doi.org/10.1109/TRO.2004.835452
  2. J. Neira and J. D. Tardos, "Data association in stochastic mapping using the joint compatibility test," IEEE Trans. Robot. Autom., vol. 17, no. 6, pp.890-897, 2001. https://doi.org/10.1109/70.976019
  3. S. Thrun, D. Fox, W. Burgard, and F. Dellaert, "Robust monte carlo localization for mobile robots," Ariti. Intell. J., vol. 128, no. 1-2, pp. 99-141, 2001. https://doi.org/10.1016/S0004-3702(01)00069-8
  4. J. Neira, J. D. Trados, and A Castellanos, "Linear time vehicle relocation in slam," Proc. 2003 IEEE Int. Conf. Robotics and Automation, pp. 427-433, 2003.
  5. L. M. Paz, P. Pinie, J. Neira, J. D. Trados, "Global localization in slam in bilinear time," Proc. 2005 IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 655-661, 2005.
  6. D. Fox, W. Burgard, and S. Thrun, "Markov localization for mobile robots in dynamic environments," Artifi. lntell. Res., vol. 11, pp. 391-427, 1999.
  7. D. Nister, "Preemptive ransac for live structure and motion estimation," Proc. 2003 IEEE Int. Conf. Computer Vision, pp. 109-206, 2003.
  8. M. Montemerlo, "Fast slam: A factored solution to the simultaneous localization and mapping problem with unknown data association, doctoral dissertation," Technical Report, CMU-RI-TR-03-28, Carnegie Mellon Univ., 2003.
  9. S. Thrun, Y. Liu, D. Koller, A. Y. Ng, Z. Ghahramani, and H. Durrant-Whyte, "Simultaneous localization and mapping with sparse extended information filters," Int. J. Robot. Res., vol. 23, no. 7-8, pp. 693-716, 2004. https://doi.org/10.1177/0278364904045479
  10. D. Shen and C. Davatzikos, "Measuring temporal morphological changes robustly in brain mr images via 4-dimensional template warping," Neurolmage, vol. 21, pp. 1508-1517, 2004. https://doi.org/10.1016/j.neuroimage.2003.12.015
  11. K. O. Arras, J. A. Castellanos, M Schilt, and R. Siegwart, "Feature-based multi-hypothesis localization and tracking using geometric constraints," Robotics and Autonomous Systems, vol. 44, no. 1, pp. 44-53, 2003.