DOI QR코드

DOI QR Code

마이너스 군지연 회로를 이용한 아날로그 피드백 증폭기의 대역폭 확장에 관한 연구

A Research on the Bandwidth Extension of an Analog Feedback Amplifier by Using a Negative Group Delay Circuit

  • 최흥재 (전북대학교 전자정보공학부 및 반도체설계교육센터) ;
  • 김영규 (전북대학교 전자정보공학부 및 반도체설계교육센터) ;
  • 심성운 (전북대학교 전자정보공학부 및 반도체설계교육센터) ;
  • 정용채 (전북대학교 전자정보공학부 및 반도체설계교육센터) ;
  • 김철동 (세원텔레텍(주))
  • Choi, Heung-Gae (IDEC Working Group, Division of Electronics and Information Engineering, Chonbuk National University) ;
  • Kim, Young-Gyu (IDEC Working Group, Division of Electronics and Information Engineering, Chonbuk National University) ;
  • Shim, Sung-Un (IDEC Working Group, Division of Electronics and Information Engineering, Chonbuk National University) ;
  • Jeong, Yong-Chae (IDEC Working Group, Division of Electronics and Information Engineering, Chonbuk National University) ;
  • Kim, Chul-Dong (Sewon Teletech. Inc.)
  • 발행 : 2010.10.31

초록

본 논문에서는 마이너스 군지연 회로를 이용하여 아날로그 RF 피드백 증폭기의 선형성 개선 대역폭을 증가시킬 수 있는 새로운 방법을 제안한다. 피드백 증폭기는 피드백 경로의 전달 시간 오차로 인하여 선형성 개선 대역폭이 제한되며, 그로 인하여 강력한 선형성 개선 효과에도 불구하고 거의 사용되지 않고 있다. 선행 연구를 통해 설계된 마이너스 군지연 회로의 군지연 특성을 응용하여 기존의 피드백 구조의 한계인 군지연 정합 문제를 해결하였다. 제작된 피드백 증폭기에 2-carrier Wideband Code Division Multiple Access (WCDMA) 신호를 인가하여 측정한 결과, WCDMA 기지국 하향 대역의 50 MHz 대역 전반에 걸쳐서 15 dB 이상의 선형성 개선 효과를 얻을 수 있었다. 평균 출력 전력이 28 dBm일 때 5 MHz 이격된 주파수에서 측정된 인접 채널 누설비(Adjacent Channel Leakage Ratio: ACLR)는 최대 25.1 dB 개선되어 -53.2 dBc로 측정되었다.

In this paper, we propose an alternative method to increase the distortion cancellation bandwidth of an analog RF feedback power amplifier by using a negative group delay circuit(NGDC). A limited distortion cancellation bandwidth due to the group delay(GD) mismatch discouraged the use of feedback technique in spite of its powerful linearization performance. With the fabricated NGDC with positive phase slope over frequency, the feedback amplifier of the proposed topology experimentally achieved adjacent channel leakage ratio(ACLR) improvement of 15 dB over 50 MHz bandwidth at wideband code division multiple access(WCDMA) downlink band when tested with 2-carrier WCDMA signal. At an average output power of 28 dBm, ACLR of 25.1 dB is improved to obtain -53.2 dBc at 5 MHz offset.

키워드

참고문헌

  1. T. Liu, S. Boumaiza, and F. M. Ghannouchi, "Deembedding static nonlinearities and accurately identifying and modeling memory effects in wideband RF transmitters", IEEE Trans. Microwave Theory Tech., vol. 53, no. 11, pp. 3578-3587, Nov. 2005. https://doi.org/10.1109/TMTT.2005.857105
  2. H. S. Black, "Translating system", U.S. Patent 1,686,792; issued Oct. 1928.
  3. H. Seidel, "A microwave feedforward experiment", Bell Syst. Tech. J., vol. 50, pp. 2879-2916, 1971. https://doi.org/10.1002/j.1538-7305.1971.tb02635.x
  4. S. C. Cripps, Advanced Techniques in RF Power Amplifier Design, Norwood, MA, Artech House, 2006.
  5. N. Pothecary, Feedforward Linear Power Amplifiers, Artech House, pp. 125-138, 1999.
  6. P. B. Kenington, High-Linearity RF Amplifier Design, Artech House, 2000.
  7. H. Seidel, N. J. Warren, "Reentrant signal feedback amplifier", U.S. Patent 3,624,532; issued Nov. 1971.
  8. H. Seidel, N. J. Warren, "Feedback amplifier", U.S. Patent 3,656,831; issued Apr. 1972.
  9. J. G. McRory, R. H. Johnston, "An RF amplifier for low intermodulation distortion", in IEEE MTT-S Int. Microwave Symp. Dig., pp. 1741-1744, 1994. https://doi.org/10.1109/MWSYM.1994.335105
  10. Y. Kim, Y. Yang, S. Kang, and B. Kim, "Linearization of 1.85 GHz amplifier using feedback predistortion loop", in IEEE MTT-S Int. Microwave Symp. Dig., pp. 1675-1678, 1998. https://doi.org/10.1109/MWSYM.1998.700701
  11. L. Qiang, Z. Z. Ying, and G. Wei, "Design of a feedback predistortion linear power amplifier", Microw. J., vol. 48, no. 5, pp. 232-241, May 2005.
  12. A. K. Ezzeddine, H. Hung, and H. Huang, "An MMAC C-band FET feedback power amplifier", IEEE Trans. Microwave Theory Tech., vol. 38, no. 4, pp. 350-357, Apr. 1990. https://doi.org/10.1109/22.52574
  13. M. Faulkner, D. Contos, and M. Johansson, "Linearisation of power amplifiers using RF feedback", Electronics Lett., vol. 31, no. 23, pp. 2023-2024, Nov. 1995. https://doi.org/10.1049/el:19951402
  14. D. Solli, R. Y. Chiao, "Superluminal effects and negative delays in electronics, and their applications", Physical Review E, no. 5, pp. 056601 1-4, Nov. 2002.
  15. L. Brillouin, A. Sommerfeld, Wave Propagation and Group Velocity, Academic Press Network, pp. 113- 137, 1960.
  16. L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain- assisted superluminal light propagation", Nature 406, issue 6793, pp. 277-279, Jun. 2000. https://doi.org/10.1038/35018520
  17. M. Kitano, T. Nakanishi, and K. Sugiyama, "Negative group delay and superluminal propagation: An electronic circuit approach", IEEE Journal of Selected Topics in Quantum Electronics, vol. 9, no. 1, pp. 43-51, Jan. 2003. https://doi.org/10.1109/JSTQE.2002.807979
  18. H. Noto, K. Yamauchi, M. Nakayama, and Y. Isota, "Negative group delay circuit for feed-forward amplifier", in IEEE Int. Microwave Symp. Dig., pp. 1103-1106, 2007. https://doi.org/10.1109/MWSYM.2007.380286
  19. B. Ravelo, A. Perennec, and M. Le Roy, "Synthesis of broadband negative group delay active circuits", in IEEE Int. Microwave Symp. Dig., pp. 2177-2180, 2007. https://doi.org/10.1109/MWSYM.2007.380357
  20. H. Choi, K. Song, C. D. Kim, and Y. Jeong, "Synthesis of negative group delay time circuit", in Asia- Pacific Microwave Conf. Dig., pp. B5-08, 2008.
  21. H. Choi, S. Shim, Y. Jeong, and C. D. Kim, "Syn- thesis of reflection type negative group delay circuit using transmission line resonator", in Proc. 39th European Microwave Conf., pp. 902-905, Sep. 2009.
  22. Y. Jeong, H. Choi, and C. D. Kim, "Experimental verification for time advancement of negative group delay circuit in RF electronic circuits", IET Electron. Lett., vol. 46, issue 4, pp. 306-307, Feb. 2010. https://doi.org/10.1049/el.2010.3147
  23. H. Choi, Y. Jeong, C. D. Kim, and J. S. Kenney, "Efficiency enhancement of feedforward amplifiers by employing a negative group delay circuit", IEEE Trans. Microwave Theory Tech., vol. 58, no. 5, pp. 1116-1125, May 2010. https://doi.org/10.1109/TMTT.2010.2045576
  24. H. Choi, Y. Kim, Y. Jeong, J. Lim, and C. D. Kim, "A compact DGS load-network for highly efficient class-E power amplifier", in Proc. 39th European Microwave Conf., pp. 1353-1356, Sep. 2009.