DOI QR코드

DOI QR Code

고출력 전자기파 노출 환경에서 인체 두부의 온도 변화

Thermal Steady State in an Anatomical Model of the Human Head under High-Power EM Exposure

  • 김우태 (연세대학교 전기전자공학과) ;
  • 육종관 (연세대학교 전기전자공학과)
  • Kim, Woo-Tae (Department of Electrical and Electronics Engineering, Yonsei University) ;
  • Yook, Jong-Gwan (Department of Electrical and Electronics Engineering, Yonsei University)
  • 발행 : 2010.10.31

초록

본 논문에서는 지속적인 고출력 전자기파 근접 노출 환경에서 인체 두부에서의 온도 변화를 살펴보았다. 근접 전자기파 발생 장치로 반파장 다이폴 안테나를 사용하고, 안테나의 위치는 귀 옆과 눈 앞 두 종류의 환경을 설정하였다. 이때, 안테나의 주파수는 두 종류의 단일 주파수 835 MHz와 1,800 MHz를 고려하였다. 전자기파 노출에 의한 인체의 전자파 흡수율(Specific Absorption Rate: SAR) 값은 시간 영역 유한 차분법(Finite-Difference Time-Domain: FDTD)으로 계산하였고, 인체에서의 온도 변화는 생체 열 방정식(Bio-Heat Equation: BHE)를 이용해 계산하였다. 또한, 연속적인 고출력 노출 환경에서 인체의 온도 변화를 보다 정확히 예측하기 위해서 온도조절 기능(thermoregulation)을 고려하였다. 온도 조절 기능을 고려하지 않을 경우에는 최대 온도 상승은 안테나 출력에 비례하는 것을 확인하였다. 반면에, 온도 조절 기능을 고려하면, 피부의 온도가 $5^{\circ}C$ 이상 증가한 구간에서는 안테나 출력에 비례하는 특성이 나타나지 않는 것을 확인할 수 있었다. 따라서, 수치 해석 방법으로, 인체조직에 손상을 일으키는 온도 상승(뇌: $3.5^{\circ}C$, 피부: $10^{\circ}C$)을 야기할 수 있는 전자기파 노출 환경을 예측하기 위해서는 온도 조절 기능을 포함한 해석을 수행해야 한다.

In this paper, the bio-heat equation including thermoregulatory functions is solved for an anatomically based human head model comprised of 14 tissues to study the thermal implications of high-power exposure to electromagnetic(EM) fields due to half-wave dipole antenna both at 835 and 1,800 MHz. The dipole antenna is located at the side of the ear and the front of the eyes. The FDTD method has been used for the SAR computation. When solving the BHE, the thermoregulation function and sweating effetecs are included in order to predict more exact temperature increase. It is noted that an approximately proportional relationship between the tissues and the maximum temperature increase and the antenna power is not maintained when the thermoregulation and sweating effects are fully accounted for under high power exposure.

키워드

참고문헌

  1. "Radio-radiation protection guidelines for human exposure to electromagnetic fields", Telecommun. Technol. council Ministry Posts Telecommun., Tokyo, Japan, Deliberation Rep. 89, 1997.
  2. "Evaluating compliance with FCC guidelines for human exposure to radio frequency electromagnetic fields", Federal Communications Commission, Washington, DC, OET Bull. 65, 1997.
  3. "Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields(up to 300 GHz)", Health Phys., vol. 74, pp. 494-522, 1998.
  4. A. C. Guyton, J. E. Hall, Textbook of Medical Physiology, Philadelphia, PA: Saunders, ch. 73, 1996.
  5. A. W. Guy, J. C. Lin, P. O. Kramar, and A. Emery, "Effect of 2,450-MHz radiation on the rabbit eye", IEEE Trans. Microwave Theory Tech., vol. MTT- 23, pp. 492-498, Jun. 1975. https://doi.org/10.1109/TMTT.1975.1128606
  6. B. Appleton, S. E. Hirsch, and P. V. K. Brown, "Investigation of single-exposure microwave ocular effects at 3,000 MHz", Ann. New York Academy Sci., vol. 247, pp. 125-134, 1975. https://doi.org/10.1111/j.1749-6632.1975.tb35989.x
  7. P. Kramer, C. Harris, A. F. Emery, and A. W. Guy, "Acute microwave irradiation and cataract formation in rabbits and monkeys", J. Microwave, vol. 13, pp. 239-249, 1978. https://doi.org/10.1080/16070658.1978.11689101
  8. D. H. Sliney, B. E. Stuck, "Microwave exposure limits for the eye: Applying infrared laser threshold data", Radiofrequency Radiation Standards. New York: Plenum, pp. 79-87, 1994.
  9. J. D. Hardy, H. G. Wolff, and H. Goodell, Pain Sensations and Reactions, Baltimore, MD: Williams & Wilkins, 1952.
  10. E. R. Adair, B. W. Adams, and G. M. Akel, "Minimal changes in hypothalamic temperature accompany microwave-induced alteration of thermoregulatory behavior", Bioeletromagn., vol. 5, pp. 13- 30, 1984. https://doi.org/10.1002/bem.2250050103
  11. P. Bernardi, M. Cavagnaro, S. Pisa, and E. Piuzzi, "SAR distribution and temperature increase in an anatomical model of the human eye exposed to the field radiated by the user antenna in a wireless LAN", IEEE Trans. Microwave Theory Tech., vol. 46, no. 12, pp. 2074-2082, Dec. 1998. https://doi.org/10.1109/22.739285
  12. P. Bernardi, M. Cavagnaro, S. Pisa, and E. Piuzzi, "Specific absorption rate and temperature elevation in a subject exposed in the far-field of radio-frequency sources operating in the 10-900 MHz range", IEEE Trans. Biomed. Eng., vol. BME-50, pp. 295-304, Mar. 2003. https://doi.org/10.1109/TBME.2003.808809
  13. O. P. Gandhi, Q.-X. Li, and G. Kang, "Temperature increase for the human head for cellular telephones and for peak SARs prescribed in safety guidelines", IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1607-1613, Sep. 2001. https://doi.org/10.1109/22.942573
  14. J. Wang, T. Joukou, and O. Fujiwara, "Dependence of antenna output power of temperature increase in human head for portable telephones", Proc. Asia Pacific Microwave Conf. '99, vol. 2, pp. 481-484, Nov. 1999.
  15. J. Wang, T. Joukou, and O. Fujiwara, "Dependence of antenna output power of temperature increase in human head exposed to near fields of portable telephones", Trans. Inst. Elect. Eng., Japan, vol. 120-C, p. 207, 2000.
  16. J. Wang, O. Fujiwara, "Comparison and evaluation of electromagnetic absorption characteristics in realistic human head models of adult and children for 900 MHz mobile telephones", IEEE Trans. Microwave Theory Tech., vol. 51, no. 3, pp. 966-971, Mar. 2003. https://doi.org/10.1109/TMTT.2003.808681
  17. A. Hirata, S. Matsuyama, and T. Shiozawa, "Temperature increase in the human eye exposed to EM waves in the frequency range 0.6-6 GHz", IEEE trans. Eletromagn. Compat., vol. 42, no. 4, pp. 386-393, Nov. 2000. https://doi.org/10.1109/15.902308
  18. A. Hirata, M. Morita, and T. Shiozawa, "Temperature increase in the human head due to a dipole antenna at microwave frequencies", IEEE Trans. Eletromagn. Compat., vol. 45, no. 1, pp. 109-116, Feb. 2003. https://doi.org/10.1109/TEMC.2002.808045
  19. A. Hirata, "Temperature increase in the human eye due to near-field and far-field exposures at 900 MHz, 1.5 GHz, and 1.9 GHz", IEEE Trans. Eletromagn. Compat., vol. 47, no. 1, pp. 68-76, Feb. 2005. https://doi.org/10.1109/TEMC.2004.842113
  20. A. Taflove, S. Hagness, Computational ElectrodyNaMics: The Finite-difference Time-domain Method, 3rd Ed.(Norwood, MA: Artech House, 2005.
  21. H. H. Pennes, "Analysis of tissue and arterial blood temperature in resting forearm", J. Appl. Physiol., vol. 1, pp. 93-122, 1948.
  22. V. Anderson, K. H. Joyner, "Specific absorption rate levels measured in a phantom head exposed to radio frequency transmissions from analog hand- held mobile phones", Bioelectromagn., vol. 16, pp. 60-69, 1995. https://doi.org/10.1002/bem.2250160112
  23. N. Kuster, Q. Balzano, "Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 MHz", IEEE Trans. Veh. Tech., vol. 41, pp. 17-23, 1992. https://doi.org/10.1109/25.120141
  24. N. C. Skaropoulos, M. P. Ioannidou, and D. P. Chrissoulidis, "Induced em field in a layered eccentric spheres model of the head: Plane-wave and localized source exposue", IEEE Trans. Microwave Theory Tech., vol. 44, pp. 1963-1973, 1996. https://doi.org/10.1109/22.539956
  25. O. P. Gandhi, G. Lazzi, and C. M. Furse, "Electromagnetic absorption in the human head and neck at 835 and 1,900 MHz", IEEE Trans. Microwave Theory Tech., vol. 44, no. 10, pp. 1884-1897, Oct. 1996. https://doi.org/10.1109/22.539947
  26. P. J. Dimbylow, "FDTD calculation of the SAR for a dipole closely coupled to the head at 900 MHz and 1.9 GHz", Phys. Med. Bio., vol. biol. 38, pp. 361-368, 1993. https://doi.org/10.1088/0031-9155/38/3/003
  27. P. J. Dimbylow, S. M. Mann, "SAR calculations in an anatomically-realistic model of the head for mobile communication transceivers at 900 MHz and 1.8 GHz", Phys. Med. Biol., vol. 39, pp. 1537- 1553, 1994. https://doi.org/10.1088/0031-9155/39/10/003
  28. M. A. Jensen, Y. Rahmat-Samii, "EM interaction of handset antenna and human body interaction", IEEE Trans. Microwave Theory Tech., vol. 44, pp. 1855-1864, Oct. 1996. https://doi.org/10.1109/22.539944
  29. S. Watanabe, M. Taki, T. Nojima, and O. Fujiwara, "Characteristics of the SAR distributions in a head exposed to electromagnetic fields radiated by a hand-held portable radio", IEEE Trans. Microwave Theory Tech., vol. 44, pp. 1874-1883, Oct. 1996. https://doi.org/10.1109/22.539946
  30. M. Okoniewski, M. A. Stuchly, "A study of the handset antenna and human body interaction", IEEE Trans. Microwave Theory Tech., vol. 44, pp. 1855-1864, Oct. 1996. https://doi.org/10.1109/22.539944
  31. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic wave", J. Compuatat. Phys., vol. 114, pp. 185-200, 1994. https://doi.org/10.1006/jcph.1994.1159
  32. K. Caputa, M. Okoniewski, and M. A. Stuchly, "An algorithm for computations of the power deposition in human tissue", IEEE Antennas and Propagation Magazine, vol. 41, no. 4, pp. 102-107, Aug. 1999. https://doi.org/10.1109/74.789742
  33. D. H. K. Lee, Handbook of Physiology-Reaction to Environmental Agents, Ed., Amer. Physiol. Soc., Bethesda, MD, pp. 45-68, 1977.
  34. W. I. Way, H. Kritikos, and H. Schwan, "Thermoregulatory physiological responses in the human body exposed to microwave radiation", Bioelectromagnetics, vol. 2, pp. 341-356, 1981. https://doi.org/10.1002/bem.2250020406
  35. R. J. Spiegel, "A review of numerical models for predicting the energy deposition and resultant thermal responses of human exposed to electromagnetic fields", IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp. 730-746, Aug. 1984. https://doi.org/10.1109/TMTT.1984.1132767
  36. W. F. Ganong, Rev. Medical Phys., 20th Ed, New York: McGraw-Hill, 2002.
  37. 이애경, 김진석, 이광천, 조광윤, "이동통신단말기 안테나 배치에 따른 두부의 전자파 흡수율", 한국전자파학회논문지, 10(7), pp. 1095-1103, 1999년 12월.
  38. 박민영, 고채옥, 김정란, 백정기, "인체 착용형 휴대 단말기에 대한 노출량 해석 연구", 한국전자파학회논문지, 17(2), pp. 207-212, 2006년 2월.
  39. 손태호, "휴대폰의 인체 SAR 연구를 위한 실험용 쥐에 대한 전자파 조사전력 설정", 한국정보기술학회 2004년 하계종합학술발표논문집, pp. 101-105, 2004년 8월.
  40. 이윤경, 백락준, 홍진옥, 육재림, 윤현보, "휴대폰 전자파에 노출된 頭部내 SAR 저감을 위한 전자파 흡수체 적용 방법 연구", 한국전자파학회논문지, 14(8), pp. 884-890, 2003년 8월.