Comparisons of Grain Size Analysis Results by Different Pretreatments Procedures in Loess-paleosol Sediments

뢰스-고토양 퇴적물의 전처리 과정에 따른 입도분석 결과 비교

  • Yoon, Soon-Ock (Department of Geography and Research Institute for Basic Sciences, Kyung Hee University) ;
  • Park, Chung-Sun (Department of Geogmphy, Kyung Hee University) ;
  • Hwang, Sang-Ill (Department of Geography, Kyungpook National University)
  • 윤순옥 (경희대학교 지리학과 및 기초과학연구소) ;
  • 박충선 (경희대학교 지리학과) ;
  • 황상일 (경북대학교 지리학과)
  • Received : 2010.10.03
  • Accepted : 2010.10.16
  • Published : 2010.10.31

Abstract

Grain size analysis of sediments and soils has been regarded as a one of the most important analytical methods in Earth Sciences. The results of grain size analysis by 10 different pretreatment procedures in loess-paleosol sediments are compared in the study. In spite of the most powerful effectiveness of dispersant(sodium hexametaphosphate) on the dispersions of sediments, the effects show large differences by its treatment orders with HCl. It may result from that $Na^+$ ions in the dispersant may not be able to effectively substitute $Ca^{2+}$ ions in the sediments due to the electrostatic forces between $Na^+$ and $Cl^-$ ions in the dispersant and HCl, respectively. Although $H_2O_2$ and HCl are more effective in dispersion than hot water, they do not affect greatly the dispersions. Therefore, the reliable results of grain size analysis can be obtained by selecting the adequate pretreatment procedures most suitable for the purposes of researches and characteristics of sediments.

퇴적물이나 토양의 입도분석은 가장 중요하고 기초적인 지구과학적 연구방법 중 하나이다. 본 연구는 뢰스-고토양 퇴적물을 대상으로 10가지 전처리 과정에 따른 입도분석 결과의 차이를 비교하였다. 퇴적물의 분산에 있어 확산제의 효과가 가장 크지만, 확산제와 염산의 처리 순서에 따라 큰 차이를 보인다. 이는 염산의 염소 이온과 확산제의 나트륨 이온 사이의 정전기적 인력으로 인해, 나트륨 이온이 효과적으로 퇴적물의 칼슘 이온을 치환하지 못하기 때문으로 생각된다. 또한 과산화수소와 염산은 끓는 물보다는 효과적이지만 퇴적물의 분산에 큰 영향을 미치지 않는다. 따라서 연구 목적 및 시료 특성에 맞는 적절한 방법을 선정해야 신뢰할 수 있는 입도분석 결과를 얻을 수 있을 것이다.

Keywords

Acknowledgement

Supported by : 기상청

References

  1. An, Z. S., Kukla G. J., Porter, S. C., and Xiao, J. L., 1991, Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years, Quaternary Research, 36, 29-36. https://doi.org/10.1016/0033-5894(91)90015-W
  2. Beuselinck, L., Govers, G., Poesen, J., Degraer, G., and Froyen, L., 1998, Grain-size analysis by laser diffractometry: Comparison with the sievepipette method, Catena, 32, 193-208. https://doi.org/10.1016/S0341-8162(98)00051-4
  3. Blott, S. J. and Pye, K., 2006, Particle size distribution analysis of sand-sized particles by laser diffraction: An experimental investigation of instrument sensitivity and the effects of particle shape, Sedimentology, 53, 671-685. https://doi.org/10.1111/j.1365-3091.2006.00786.x
  4. Buscombe, D., 2008, Estimation of grain-size distributions and associated parameters from digital images of sediment, Sedimentary Geology, 210, 1-10. https://doi.org/10.1016/j.sedgeo.2008.06.007
  5. Chae, K. I., 1979, The effect of dispersing agents on grain size analysis of soil(1), Journal of Sangju National University, 18, 135-141 (in Korean).
  6. Chang, Y. S. and Park, H. D., 2001, Image analysis method for the color and texture information of rock, Journal of the Korean Society for Geosystem Engineering, 38(5), 352-363 (in Korean).
  7. Chough, S. K., Rhee, C. W., Sohn, Y. K., and Hwang, I. G., 1995, Sedimentology, Woosung, Seoul (조성 권.이철우.손영관.황인걸, 1995, 퇴적학, 우성, 서울).
  8. De Boer, G. B. J., de Weerd, C., Thoenes, D., and Goossens, H. W. J., 1987, Laser diffraction spectrometry: Fraunhofer diffraction versus Mie scattering, Particle & Particle Systems Characterization, 4, 14-19. https://doi.org/10.1002/ppsc.19870040104
  9. Folk, R. L. and Ward, W. C., 1957, Brazos River bar: A study in the significance of grain size parameters, Journal of Sedimentary Petrology, 27, 3-26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
  10. Gee, G. W. and Bauder, J. W., 1986, Particle-size analysis, in Klute, A. (ed.), Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods(second edition), American Society of Agronomy and Soil Science Society of America, Madison, 383-411.
  11. Hwang, S. I., Park, C. S., and Yoon, S. O., 2009, Weathering properties and provenance of loesspaleosol sequencen deposited in river terrace in the Bongdong area, Wangju-gun, Jeonbuk Province, Journal of the Korean Geographical Society, 44(4), 463-480 (in Korean).
  12. Hwang, T. J., Jin, C. S., Min, T. K., and Kim, C. Y., 2005, Particle size distribution analysis for granular material using digital image processing, Journal of the Korean Society of Civil Engineers, 25(4C), 259-266 (in Korean).
  13. Kim, Y. R., 2007, Properties of local loess of small basin in Charyong Ranges-Iljuk, Anseong City, Central Korea, Journal of the Korean Geomorphological Association, 14(2), 67-81 (in Korean).
  14. Konert, M. and Vandenberghe, J., 1997, Comparison of laser grain-size analysis with pipette and sieve analysis: A solution for the underestimation of the clay fraction, Sedimentology, 44, 523-535. https://doi.org/10.1046/j.1365-3091.1997.d01-38.x
  15. Lee, Y. I. and Yi, S. B., 2002, Characteristics of Pyeongchang-ri paleolithic-site paleosols, Yongin-si, Gyeonggi-do, Korea: Implication for archaeogeological application, Journal of the Geological Society Korea, 38(4), 417-489 (in Korean).
  16. Loizeau, J. L., Arbouille, D., Santiago, S., and Vernet, J. P., 1994, Evaluation of a wide range laser diffraction grain size analyser for use with sediments, Sedimentology, 41, 353-361. https://doi.org/10.1111/j.1365-3091.1994.tb01410.x
  17. Lu, H. and An, Z., 1998, Pretreated methods on loesspalaeosol samples granulometry, Chinese Science Bulletin, 43, 237-240. https://doi.org/10.1007/BF02898920
  18. Mason, J. A., Jacobs, P. M., Greene, R. S. B., and Nettleton, W. D., 2003, Sedimentary aggregates in the Peoria Loess of Nebraska, USA, Catena, 53, 377-397. https://doi.org/10.1016/S0341-8162(03)00073-0
  19. McTainsh, G. H., Nickling, W. G., and Lynch, A. W.,1997, Dust deposition and particle size in Mali, West Africa, Catena, 29, 307-322. https://doi.org/10.1016/S0341-8162(96)00075-6
  20. Nelsen, T. A., 1983, Time- and method-dependent size distributions of fine-grained sediments, Sedimentology, 30, 249-259. https://doi.org/10.1111/j.1365-3091.1983.tb00668.x
  21. Oh, K. S. and Kim, N. S., 1994, Origin and postdepositional deformation of the superficial formations covering basalt plateau in Chungok area, The Korean Journal of Quaternary Research, 8(1), 43-68 (in Korean).
  22. Park, C. S., Yoon, S. O., and Hwang, S. I., 2007, Properties and provenance of loess-paleosol sequence at the Daebo Granite area of Buan, Jeonbuk Province, South Korea, Journal of the Korean Geographical Society, 42(6), 898-913 (in Korean).
  23. Park, D. W., 1985, A study on the loessial red yellow soil of Hwangsan, Kimje County and Gamgok, Chungeup County of the south western coastal area of Korea - With special reference to the possibility of loess deposition, Geography, 32, 1- 10 (in Korean).
  24. Porter, S. C. and An, Z. S., 1995, Correlation between climate events in the North Atlantic and China during the last glaciation, Nature, 375, 305-308. https://doi.org/10.1038/375305a0
  25. Shin, J. B., Yu, K. M., Naruse, T., and Hayashida, A., 2004, Study on loess-paleosol stratigraphy of Quaternary unconsolidated sediments at E55S20-IV pit of Chongokni Paleolithic site, Journal of the Geological Society Korea, 40(4), 369-381 (in Korean).
  26. Yang, S. and Ding, Z., 2008, Advance-retreat history of the East-Asian summer monsoon rainfall belt over northern China during the last two glacialinterglacial cycles, Earth and Planetary Science Letters, 274, 499-510. https://doi.org/10.1016/j.epsl.2008.08.001
  27. Yoon, S. O., Park, C. S., Hwang, S. I., and Naruse, T., 2007, Weathering characteristics of loesspaleosol sequence at the Daecheon area, South Korea, Journal of the Geological Society of Korea, 43(3), 281-296 (in Korean).
  28. http://www.malvern.co.kr/