DOI QR코드

DOI QR Code

미래 산림식생변화 예측을 위한 개선된 CA-Markov 기법의 적용

Application of the Modified CA-Markov Technique for Future Prediction of Forest Land Cover in a Mountainous Watershed

  • Park, Min-Ji (Dept. of Civil and Environmental System Engineering, Konkuk University) ;
  • Park, Geun-Ae (Dept. of Civil and Environmental System Engineering, Konkuk University) ;
  • Lee, Yong-Jun (Dept. of Civil and Environmental System Engineering, Konkuk University) ;
  • Kim, Seong-Joon (Dept. of Civil and Environmental System Engineering, Konkuk University)
  • 발행 : 2010.01.31

초록

토지피복은 대부분의 수문 수질 모형의 중요한 매개변수로서, 수자원 변화 예측에 중요한 입력자료로 활용되고 있다. 본 연구에서는 개선된 CA (Cellular Automata)-Markov 기법을 이용하여 충주댐유역의 미래 산림식생변화에 대한 예측을 시도하였다. 예측과정으로 과거의 Landsat TM 영상 (1985, 1990, 1995, 2000)을 이용하여 기법의 정확도 검증 및 산림분포의 변화경향을 파악하고, Landsat 산림은 2000년과 2005년의 NOAA AVHRR NDVI값을 기준으로 침엽수림, 혼효림, 활엽수림의 3종으로 구분한 후, 이를 이용하여 2030년, 2060년, 2090년의 식생변화를 추정하는 방법을 제안하였다. 이 방법의 적용결과, 2000년과 비교하여 2090년의 활엽수림과 혼효림은 각각 14.3 %, 11.6 % 증가하였으며, 침엽수림은 24.9 % 감소하는 것으로 나타났다. 과거의 경향성에 의해 예측을 시도한 본 연구결과는 미래 토지피복 변화에 따른 수문 수질 영향 분석시 지표 조건의 불확실성을 줄이는데 활용될 수 있다고 판단된다.

키워드

참고문헌

  1. Adan I., 2003. Markov chains and Markov processes. http://www.win.tue.nl/-iadan/sdp/h3.pdf.
  2. Choi, J. Y., B.A. Engel, S. Muthukrishnan and J. Harbor, 2003. GIS based long term hydrologic impact evaluation for watershed urbanization. Journal of American Water Resources Association 39(3): 623-635. https://doi.org/10.1111/j.1752-1688.2003.tb03680.x
  3. Clarke, K. C. and L. J. Gaydos, 1998. Loose-coupling a cellular automata model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore. International Journal of Geographical Information Science 12(7): 699-714. https://doi.org/10.1080/136588198241617
  4. Clarke, K. C., S. Hoppen, and L. Gaydos, 1997. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning 24(2): 247-261. https://doi.org/10.1068/b240247
  5. Fischer, G. and L. Sun, 2001. Model-based analysis of future land-use development in China. Agriculture, Ecosystems & Environment 85(11): 163-176. https://doi.org/10.1016/S0167-8809(01)00182-7
  6. Gutowitz, H., 1991. Cellular automata theory and experiment. 1st MIT Press edition, Boston, MA.
  7. Kim, S. J., H. J. Kwon, G. A. Park, and M. S. Lee, 2005. Assessment of land-use impact on streamflow via a gridbased modelling approach including paddy fields. Hydrol. Process. 19: 3801-3817. https://doi.org/10.1002/hyp.5982
  8. Matthews, R. B., M. J. Kropff, T. Horie, and D. Bachelet, 1997. Simulating the impact of climate change on rice production in Asia and evaluating options for adaptation. Agricultural Systems 54(3):399-425. https://doi.org/10.1016/S0308-521X(95)00060-I
  9. McClintock, K., J. Harbor, and T. Wilson, 1995. Assessing the hydrologic impact of land use change in wetland watershed: a case study from northern Ohio, USA. In Geomorphology and Land Management in a Changing Environment, McGregor D, Thompson D (eds). Wiley: New York; 107-119.
  10. Lee, D. R., and G.T. Sallee, 1970. A method of measuring shape. Geographical Review 60(4): 555-563. https://doi.org/10.2307/213774
  11. Lee, Y. J., and S. J. Kim, 2007. A modified Ca-Markov technique for prediction of future land use change. Journal of the Korean Society of Civil Engineers 27(6D): 809-817 (in Korean).
  12. Park, G. A., and S. J. Kim, 2007. Prediction of the urbanization progress using factor analysis and CAMarkov technique. Journal of the Korean Society of Agricultural Engineers 49(6): 105-114 (in Korean).
  13. Tong, C., C. A. S. Hall, and H. Wang, 2003. Landuse change in rice wheat and maize production in China (1961-1998). Agriculture. Ecosystems & Environment 95(3): 523-536. https://doi.org/10.1016/S0167-8809(02)00182-2
  14. Torrens, P. M. and D. O. Sullivan, 2001. Editorial: Cellular automata and urban simulation: Where do we go from here? Environment and Planning 28(2): 163-168. https://doi.org/10.1068/b2802ed
  15. Verburg, P. H. and A. Veldkamp, 2001. The role of spatially explicit models in land-use change research: a case study for cropping patterns in China. Agriculture. Ecosystems & Environment 85(1-3): 177-190. https://doi.org/10.1016/S0167-8809(01)00184-0