Prediction of Surgical Anesthesia in Medetomidine/Tiletamine/Zolazepam Anesthetized Dogs using Electroencephalography

Medetomidine/Tiletamine/Zolazepam 마취견에서 뇌전도를 이용한 외과마취의 평가

  • Jang, Hwan-Soo (Department of Pharmacology, School of Medicine, Kyungpook National University) ;
  • Kim, Jung-Eun (Department of Nuclear Medicine, School of Medicine, Kyungpook National University) ;
  • Lim, Jae-Hyun (Ace Animal Hospital) ;
  • Kwon, Young-Sam (Department of Surgery, College of Veterinary Medicine, Kyungpook National University) ;
  • Lee, Maan-Gee (Department of Pharmacology, School of Medicine, Kyungpook National University) ;
  • Jang, Kwang-Ho (Department of Surgery, College of Veterinary Medicine, Kyungpook National University)
  • 장환수 (경북대학 의과대학 약리학교실) ;
  • 김정은 (경북대학 의과대학 핵의학교실) ;
  • 임재현 (에이스 동물병원) ;
  • 권영삼 (경북대학교 수의과대학 수의외과학교실) ;
  • 이만기 (경북대학 의과대학 약리학교실) ;
  • 장광호 (경북대학교 수의과대학 수의외과학교실)
  • Accepted : 2010.09.30
  • Published : 2010.10.30

Abstract

Changes of electroencephalogram (EEG), mean arterial blood pressure (MAP) and heart rate under surgical anesthesia were investigated in medetomidine (MED) and tiletamine/zolazepam (ZT)-anesthetized dogs. To determine the level of surgical anesthesia, pedal withdrawal reflex was regularly tested after ZT injection. The first time point without pain response was regarded as the beginning of surgical anesthesia (SSA). After SSA, the first time point showing positive pain response was considered the end of surgical anesthesia (ESA). Comparing the control, an additional significant decrease of ${\delta}2$ and ${\alpha}2$ was observed at SSA. Comparing the control, ${\delta}2$ was significantly decreased at ESA. Significant reductions of MAP were observed at pre-ESA and ESA. Heart rate significantly decreased in all stages. These results suggest that ${\delta}2$ band power is a valuable parameter for correlating surgical anesthesia in dogs anesthetized with MED and ZT.

Medetomidine (MED)과 tiletamine/zolazepam (ZT)으로 마취한 개에서 외과 마취 상태 하에서의 뇌전도, 혈압 및 심박수 변화를 조사하였다. 외과 마취 수준을 결정하기 위해 ZT 주사 후, pedal withdrawal reflex를 규칙적으로 평가하였다. 통증반응을 보이지 않은 최초 시간은 외과마취 개시기로 결정하였다. 외과마취 개시기 후 처음으로 통증에 양성반응을 보이는 시간을 외과마취 종료기로 하였다. 대조군과 비교할 때 외과마취 개시기에 ${\delta}2$${\alpha}2$의 유의적인 감소가 나타났으며 외과마취 종료기에, ${\delta}2$의 유의적인 변화가 관찰되었다. 외과마취 종료기 직전과 외과마취 종료기에 혈압이 유의적으로 감소하였다. 심박수는 전실험기간 유의적인 감소를 보였다. 이런 결과로 미루어 ${\delta}2$ band power는 MED와 ZT로 마취한 개에서 외과마취와 관련된 가치있는 지표로 판단되었다.

Keywords

References

  1. Akiyama T, Kobayashi K, Nakahori T, Yoshinaga H, Ogino T, Ohtsuka Y, Takeuchi M, Morita K, Sano S, Oka E. Electroencephalographic changes and their regional differences during pediatric cardiovascular surgery with hypothermia. Brain Dev 2001; 23: 115-121. https://doi.org/10.1016/S0387-7604(01)00192-9
  2. Barnhart MD, Hubbell JAE, Muir WW. Evaluation of the analgesic properties of acepromazine maleate, oxymorphone, medetomidine and a combination acepromazine-oxymorphone. Vet Anaesth Analg 2000; 27: 89-96. https://doi.org/10.1046/j.1467-2995.2000.00024.x
  3. Bischoff P, Kochs E, Haferkorn D, Schulte am Esch J. Intraoperative EEG changes in relation to the surgical procedure during isoflurane-nitrous oxide anesthesia: hysterectomy versus mastectomy. J Clin Anesth 1996; 8: 36-43. https://doi.org/10.1016/0952-8180(95)00170-0
  4. Bischoff P, Schmidt GN, Scharein E, Bromm B, Schulte am Esch J. Clonidine induced sedation and analgesia. J Neurol 2004; 251: 219-221. https://doi.org/10.1007/s00415-004-0283-9
  5. Cullen LK, Reynoldson JA. Effects of tiletamine/zolazepam premedication on propofol anesthesia in dogs. Vet Rec 1997; 140: 363-366. https://doi.org/10.1136/vr.140.14.363
  6. Donaldson LL, Mcgrath CJ, Tracy CH. Testing low doses of intravenous Telazol in canine practice. Vet Med 1989; 84: 1202-1207.
  7. Dwyer RC, Rampil IJ, Eger EI, 2nd, Bennett HL. The electroencephalogram does not predict depth of isoflurane anesthesia. Anesthesiology 1994; 81: 403-409. https://doi.org/10.1097/00000542-199408000-00019
  8. Guignard B, Menigaux C, Dupont X, Fletcher D, Chauvin M. The effect of remifentanil on the bispectral index change and hemodynamic responses after orotracheal intubation. Anesth Analg 2000; 90: 161-167. https://doi.org/10.1097/00000539-200001000-00034
  9. Huang L, Yu P, Ju F, Cheng J. Prediction of response to incision using the mutual information of electroencephalograms during anesthesia. Med Eng Phys 2003; 25: 321-327. https://doi.org/10.1016/S1350-4533(02)00249-7
  10. Leslie K, Sessler DI, Smith WD, Larson MD, Ozaki M, Blanchard D, Crankshaw DP. Prediction of movement during propofol/nitrous oxide anesthesia. Anesthesiology 1996; 84: 52-63. https://doi.org/10.1097/00000542-199601000-00006
  11. Lin HC, Thurmon JC, Tranquilli WJ, Benson GJ, Olson WA. Hemodynamic response of calves to tiletamine-zolazepamxylazine anesthesia. Am J Vet Res 1991; 52: 1606-1610.
  12. Moore MP, Greene SA, Keegan RD, Gallagher L, Gavin PR, Kraft SL, DeHaan C, Klappenbach K. Quantitative electroencephalography in dogs anesthetized with 2.0% end-tidal concentration of isoflurane anesthesia. Am J Vet Res 1991; 52: 551-560.
  13. Otto KA, Mally P. Noxious stimulation during orthopaedic surgery result in EEG 'arousal' or 'paradoxical arousal' reaction in isoflurane anesthetised sheep. Res Vet Sci 2003; 75: 103-112. https://doi.org/10.1016/S0034-5288(03)00077-8
  14. Otto KA, Short CE. Electroencephalographic power spectrum analysis as a monitor of anesthetic depth in horses. Vet Surg 1991; 20: 362-371. https://doi.org/10.1111/j.1532-950X.1991.tb01284.x
  15. Pypendop B, Poncelet L, Verstegen J. Use of midlatency auditory-evoked potentials as indicator of unconsciousness in the dog: characterization of the effects of acepromazine-thiopentone, medetomidine-thiopentone and medetomidine-butorphanol- midazolam combinations. Res Vet Sci 1999; 67: 35-39. https://doi.org/10.1053/rvsc.1998.0273
  16. Pypendop B, Serteyn D, Verstegen J. Hemodynamic effects of medetomidine-midazolam-butorphanol and medetomidinemidazolam- buprenorphine combination and reversibility by atipamezole in dogs. Am J Vet Res 1996; 57: 724-730.
  17. Rampil IJ. Monitoring depth of anesthesia. Curr Opin Anaesthesiol 2001; 14: 649-653. https://doi.org/10.1097/00001503-200112000-00009
  18. Rampil IJ, Laster MJ. No correlation between quantitative electroencephalographic measurements and movement response to noxious stimuli during isoflurane anesthesia in rats. Anesthesiology 1992; 77: 920-925. https://doi.org/10.1097/00000542-199211000-00014
  19. Robinson KJ, Jones RS, Cripps PJ. Effects of medetomidine and buprenorphine administered for sedation in dogs. J Small Anim Pract 2001; 42: 444-447. https://doi.org/10.1111/j.1748-5827.2001.tb02498.x
  20. Schmidt GN, Bischoff P, Standl T, Lankenau G, Hilbert M, Schulte Am Esch J. Comparative evaluation of Narcotrend, Bispectral index, and classical electroencephalographic variables during induction, maintenance, and emergence of a propofol/ remifentanil anesthesia. Anesth Analg 2004; 98: 1346-1353.
  21. Schraag S, Mohl U, Bothner U, Georgieff M. Clinical utility of EEG parameters to predict loss of consciousness and response to skin incision during total intravenous anesthesia. Anesthesia 1998; 53: 320-325. https://doi.org/10.1046/j.1365-2044.1998.00311.x
  22. Sebel PS, Lang E, Rampil IJ, White PF, Cork R, Jopling M, Smith NT, Glass PS, Manberg P. A multicenter study of bispectral electroencephalogram analysis for monitoring anesthetic effect. Anesth Analg 1997; 84: 891-899. https://doi.org/10.1213/00000539-199704000-00035
  23. Thurmon JC, Tranquilli WJ, Benson GJ. Preanesthetic and anesthetic adjuncts. In: Thurmon JC, Tranquilli WJ, Benson GJ ed, Veterinary Anesthesia. Baltimore: Williams & Wilkins. 1996: 183-209.
  24. Verstegen J, Fargetton X, Donnay I, Ectors F. An evaluation of medetomidine/ketamine and other drug combination for anesthesia in cats. Vet Rec 1991; 128: 32-35. https://doi.org/10.1136/vr.128.2.32