Effects of a Lipid Mixture on Glucocorticoid-induced Barrier Impairment and Epidermal Atrophy in the Canine Skin

글루코코티코이드에 의해서 유발된 개 피부의 장벽기능이상과 위축에 대한 지질 혼합물의 효과

  • Jin, Yeo-Won (Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Kyungpook National University) ;
  • Ahn, Mi-Ji (Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Kyungpook National University) ;
  • Ku, Sae-Kwang (Department of Anatomy and Histology, College of Daegu Haany University) ;
  • Park, Hyun-Jeong (Department of Veterinary Radiology, College of Veterinary Medicine, Jeju National University) ;
  • Lee, Keun-Woo (Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Kyungpook National University) ;
  • Oh, Tae-Ho (Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Kyungpook National University)
  • Accepted : 2010.10.07
  • Published : 2010.10.30

Abstract

The aims of the present study were to characterize the effect of glucocorticosteroids (GCs) on the normal canine skin and to evaluate the effect of a lipid mixture (LM), containing cholesterol, pseudoceramide, and free fatty acid, on the steroid-induced damaged skin of dogs. Five beagles were involved and the skin of the back of each dog was topically applied with four kinds of GCs twice daily for 28 days. LM was applied after that period of GCs application. Transepidermal water loss (TEWL), skin hydration, and skin pH were assessed during experimental periods and histopathological evaluation was performed. TEWL was significantly increased, with a maximum increase obtained on day 28 (p < 0.01). Skin pH was significantly decreased, with a maximum decrease obtained on day 28 (p < 0.01). Skin surface hydration was significantly increased on day 3, but values of skin hydration were progressively decreased and finally reached those of baseline. In histology, as results of steroid application, losses of keratin layers in the stratum corneum and edematous changes in the upper parts of dermis, and consequently, thickness of the epidermis and the stratum corneum were decreased. In addition, the numbers of hair follicles were markedly decreased in steroid control as compared to intact control. However, these skin atrophic changes were markedly inhibited by treatment of LM as compared with steroid control in the present study. Moreover, all biophysical parameters were reached to the baseline after LM treatment. These results showed that the topically applied GCs induced skin barrier impairment and a LM should be effective on repair of disturbed skin barrier function in dogs. Therefore, it is concluded that a LM tested in the present study is expected to treat the steroid-induced skin damages.

본 연구의 목적은 정상적인 개의 피부에 스테로이드제 적용후 손상된 피부에 대한 지질 혼합물(콜레스테롤, 세라마이드, 자유지방산 함유)의 효과를 알아보는데 있다. 5두의 실험견을 대상으로 각각의 스테로이드제를 하루에 두 번씩 총 28일간 피부에 적용한 후, 지질 혼합물을 14일간 적용하였으며 실험기간 동안 표피경유수분손실(TEWL), 피부 수화도, 피부 산도를 측정하였고, 조직학적 분석을 실시하였다. 스테로이드 제제를 적용한 결과, 표피경유수분손실는 유의적으로 증가하였으며 28일 째 되는 날 가장 높은 수치를 나타냈다 (p < 0.01). 또한 피부 산도는 유의적으로 감소하여 28일 째 되는 날 가장 낮은 수치를 나타냈다 (p < 0.01). 피부 수화도는 3일 째 유의적으로 증가하였지만 그 후에는 점차 감소해서 기본 수치에 도달하였다. 조직학적 분석에서는 스테로이드 제제를 적용함에 따라서 각질층의 케라틴 감소, 진피 상부의 부종, 그리고 상피 및 각질층의 두께가 얇아진 것을 확인할 수 있었다. 게다가 대조군과 비교하였을 때 모낭의 숫자가 현저하게 감소하였고 상피와 모낭에서 caspase-3면역반응세포와 PARP면역반응세포의 숫자가 상당히 증가하였는데 (p < 0.01), 이것은 스테로이드 제제의 적용에 의해 피부의 위축현상이 나타났음을 의미한다. 하지만 지질 혼합물을 적용한 결과 이러한 피부위축현상이 상당히 억제되었고, 피부의 생리학적인 지표들이 기본 수치로 회복되었다. 이런 결과는 글루코코티코스테로이드 제제의 국소적인 적용이 피부장벽의 기능이상을 야기했다는 것을 의미하며, 지질 혼합물이 손상된 개의 피부를 치료하는데 효과적으로 사용될 수 있다는 가정을 입증한다. 그러므로 본 연구에서 사용된 지질 혼합물은 스테로이드 제제에 의해서 발생된 개의 피부 손상을 치료할 수 있을 것으로 기대된다.

Keywords

References

  1. Ahn SK, Bak HN, Park BD, Kim YH, Youm JK, Choi EH, Hong SP, Lee SH. Effects of a multilamellar emulsion on glucocorticoid-induced epidermal atrophy and barrier impairment. J Dermatol 2006; 33: 80-90. https://doi.org/10.1111/j.1346-8138.2006.00018.x
  2. Berardesca E, Distante F, Vignoli GP, Oresajo C, Green B. Alpha hydroxyacids modulate stratum corneum barrier function. Br J Dermatol 1997; 137: 934-938. https://doi.org/10.1111/j.1365-2133.1997.tb01554.x
  3. de Jager MW, Gooris GS, Dolbnya IP, Bras W, Ponec M. Novel lipid mixtures based on synthetic ceramides reproduce the unique stratum corneum lipid organization. J Lipid Res 2004; 45: 923-932. https://doi.org/10.1194/jlr.M300484-JLR200
  4. Dunstan RW, Herdt TH, Olivier B, Mei BS, Credille KM, Kennis RA, Maier RL, Oliver B, Castle S, Reinhart GA, Davenport GM. Age- and breed-related differences in canine skin surface lipids and pH. In: Advanced in Veterinary Dermatology, ed. Thoday KT, Foil CS, Bond R. Oxford: Blackwell Science. 2000: 37-42.
  5. Fluhr JW, Kao J, Jain M, Ahn SK, Feingold KR, Elias PM. Generation of free fatty acids from phospholipids regulates stratum corneum acidification and integrity. J Invest Dermatol 2001; 117: 44-51. https://doi.org/10.1046/j.0022-202x.2001.01399.x
  6. Geilen CC, Wieder T, Orfanos CE. Ceramide signalling: regulatory role in cell proliferation, differentiation and apoptosis in human epidermis. Arch Dermatol Res 1997; 289: 559-566. https://doi.org/10.1007/s004030050240
  7. Haake A, Scott GA, Holbrook KA. Structure and function of the skin: overview of the epidermis and dermis. In: The biology of the skin, New York: The Parthenon Publising Group. 2001: 19-45.
  8. Hachem JP, Crumrine D, Fluhr J, Brown BE, Feingold KR, Elias PM. pH directly regulates epidermal permeability barrier homeostasis, and stratum corneum integrity/cohesion. J Invest Dermatol 2003; 121: 345-353. https://doi.org/10.1046/j.1523-1747.2003.12365.x
  9. Huang HC, Chang TM. Ceramide 1 and ceramide 3 act synergistically on skin hydration and the transepidermal water loss of sodium lauryl sulfate-irritated skin. Int J Dermatol 2008; 47: 812-819. https://doi.org/10.1111/j.1365-4632.2008.03687.x
  10. Kao JS, Fluhr JW, Man MQ, Fowler AJ, Hachem JP, Crumrine D, Ahn SK, Brown BE, Elias PM, Feingold KR. Short-term glucocorticoid treatment compromises both permeability barrier homeostasis and stratum corneum integrity: inhibition of epidermal lipid synthesis accounts for functional abnormalities. J Invest Dermatol 2003; 120: 456-464. https://doi.org/10.1046/j.1523-1747.2003.12053.x
  11. Kimura T, Doi K. Dorsal skin reactions of hairless dogs to topical treatment with corticosteroids. Toxicol Pathol 1999; 27: 528-535. https://doi.org/10.1177/019262339902700506
  12. Kolbe L, Kligman AM, Schreiner V, Stoudemayer T. Corticosteroid- induced atrophy and barrier impairment measured by non-invasive methods in human skin. Skin Res Technol 2001; 7: 73-77. https://doi.org/10.1034/j.1600-0846.2001.70203.x
  13. Laurence EB, Christophers E. Selective action of hydrocortisone on postmitotic epidermal cells in vivo. J Invest Dermatol 1976; 66: 222-229. https://doi.org/10.1111/1523-1747.ep12482145
  14. Lehmann P, Zheng P, Lavker RM, Kligman AM. Corticosteroid atrophy in human skin. A study by light, scanning, and transmission electron microscopy. J Invest Dermatol 1983; 81: 169-176. https://doi.org/10.1111/1523-1747.ep12543603
  15. Madison KC. Barrier function of the skin: "la raison d'etre" of the epidermis. J Invest Dermatol 2003; 121: 231-241. https://doi.org/10.1046/j.1523-1747.2003.12359.x
  16. Ponec M, Weerheim A, Lankhorst P, Wertz P. New acylceramide in native and reconstructed epidermis. J Invest Dermatol 2003; 120:581-588. https://doi.org/10.1046/j.1523-1747.2003.12103.x
  17. Rogiers V. EEMCO guidance for the assessment of transepidermal water loss in cosmetic sciences. Skin Pharmacol Appl Skin Physiol 2001; 14: 117-128. https://doi.org/10.1159/000056341
  18. Schoepe S, Schacke H, May E, Asadullah K. Glucocorticoid therapy-induced skin atrophy. Exp Dermatol 2006; 15: 406-420. https://doi.org/10.1111/j.0906-6705.2006.00435.x
  19. Scott DW, Miller WH, Griffin CE. Muller & Kirk's Small Animall Dermatology, 6 ed. Philadelphia: W.B. Saunders. 2001: 1-70.
  20. Sheu HM, Lee JY, Chai CY, Kuo KW. Depletion of stratum corneum intercellular lipid lamellae and barrier function abnormalities after long-term topical corticosteroids. Br J Dermatol 1997; 136: 884-890. https://doi.org/10.1111/j.1365-2133.1997.tb03929.x
  21. Shi SR, Chaiwun B, Young L, Cote RJ, Taylor CR. Antigen retrieval technique utilizing citrate buffer or urea solution for immunohistochemical demonstration of androgen receptor in formalin-fixed paraffin sections. J Histochem Cytochem 1993; 41: 1599-1604. https://doi.org/10.1177/41.11.7691930
  22. Smulson ME, Pang D, Jung M, Dimtchev A, Chasovskikh S, Spoondle A, Simbulan-Rosenthal C, Rosenthal D, Yakovlev A, Dritschilo A. Irreversible binding of poly (ADP) ribose polymerase cleavage product to DNA ends revealed by atomic force microscopy: possible role in apoptosis. Cancer Res 1998; 58: 3495-3498.
  23. Stewart ME, Downing DT. A new 6-hydroxy-4-sphingeninecontaining ceramide in human skin. J Lipid Res 1999; 40: 1434-1439.
  24. Trucco C, Oliver FJ, de Murcia G, Menissier-de Murcia J. DNA repair defect in poly (ADP-ribose) polymerase-deficient cell lines. Nucleic Acids Res 1998; 26: 2644-2649. https://doi.org/10.1093/nar/26.11.2644
  25. Ueda Y, Sone T, Inagaki N, Nagai H. Effects of prednisolone on the cutaneous reaction and skin barrier function in mice treated with a hapten. Biol Pharm Bull 2003; 26: 618-621. https://doi.org/10.1248/bpb.26.618
  26. Vavrova K, Hrabalek A, Mac-Mary S, Humbert P, Muret P. Ceramide analogue 14S24 selectively recovers perturbed human skin barrier. Br J Dermatol 2007; 157: 704-712. https://doi.org/10.1111/j.1365-2133.2007.08113.x