DOI QR코드

DOI QR Code

Effects of fibrin-binding oligopeptide on osteopromotion in rabbit calvarial defects

  • Lee, Ju-A (Department of Periodontology and Dental Research Institute, Seoul National University School of Dentistry) ;
  • Ku, Young (Department of Periodontology and Dental Research Institute, Seoul National University School of Dentistry) ;
  • Rhyu, In-Chul (Department of Periodontology and Dental Research Institute, Seoul National University School of Dentistry) ;
  • Chung, Chong-Pyoung (Department of Periodontology and Dental Research Institute, Seoul National University School of Dentistry) ;
  • Park, Yoon-Jeong (Craniomaxillofacial Reconstructive Science Major, Seoul National University School of Dentistry)
  • Received : 2010.06.10
  • Accepted : 2010.08.01
  • Published : 2010.11.03

Abstract

Purpose: Fibronectin (FN) has been shown to stimulate bone regeneration in animal models. The aim of this study was to evaluate the capacity of bovine bone mineral coated with synthetic oligopeptides to enhance bone regeneration in rabbit calvarial defects. Methods: Oligopeptides including fibrin-binding sequences of FN repeats were synthesized on the basis of primary and tertiary human plasma FN structures. Peptide coated and uncoated bone minerals were implanted into 10 mm calvarial defects in New Zealand white rabbits, and the animals were sacrificed at 4 or 8 weeks after surgery. After specimens were prepared, histologic examination and histomorphometric analysis were performed. Results: At 4 weeks after surgery, the uncoated groups showed a limited amount of osteoid formation at the periphery of the defect and the oligopeptide coated groups showed more osteoid formation and new bone formation in the center of the defect as well as at the periphery. At 8 weeks, both sites showed increased new bone formation. However, the difference between the two sites had reduced. Conclusions: Fibrin-binding synthetic oligopeptide derived from FN on deproteinized bovine bone enhanced new bone formation in rabbit calvarial defects at the early healing stage. This result suggests that these oligopeptides can be beneficial in reconstructing oral and maxillofacial deformities or in regenerating osseous bone defects.

Keywords

References

  1. Hallman M, Cederlund A, Lindskog S, Lundgren S, Sennerby L. A clinical histologic study of bovine hydroxyapatite in combination with autogenous bone and fibrin glue for maxillary sinus floor augmentation. Results after 6 to 8 months of healing. Clin Oral Implants Res 2001;12:135-43. https://doi.org/10.1034/j.1600-0501.2001.012002135.x
  2. Carlson ER, Marx RE. Part II. Mandibular reconstruction using cancellous cellular bone grafts. J Oral Maxillofac Surg 1996;54:889-97. https://doi.org/10.1016/S0278-2391(96)90543-1
  3. Petrovic L, Schlegel AK, Schultze-Mosgau S, Wiltfang J. Different substitute biomaterials as potential scaffolds in tissue engineering. Int J Oral Maxillofac Implants 2006; 21:225-31.
  4. Springer IN, Terheyden H, Geiss S, Harle F, Hedderich J, Acil Y. Particulated bone grafts: effectiveness of bone cell supply. Clin Oral Implants Res 2004;15:205-12. https://doi.org/10.1111/j.1600-0501.2004.00976.x
  5. Garrett S. Periodontal regeneration around natural teeth. Ann Periodontol 1996;1:621-66. https://doi.org/10.1902/annals.1996.1.1.621
  6. Jensen SS, Aaboe M, Pinholt EM, Hjorting-Hansen E, Melsen F, Ruyter IE. Tissue reaction and material characteristics of four bone substitutes. Int J Oral Maxillofac Implants 1996;11:55-66.
  7. Fukuta K, Har-Shai Y, Collares MV, Lichten JB, Jackson IT. Comparison of inorganic bovine bone mineral particles with porous hydroxyapatite granules and cranial bone dust in the reconstruction of full-thickness skull defect. J Craniofac Surg 1992;3:25-9. https://doi.org/10.1097/00001665-199207000-00010
  8. Haas R, Donath K, Fodinger M, Watzek G. Bovine hydroxyapatite for maxillary sinus grafting: comparative histomorphometric findings in sheep. Clin Oral Implants Res 1998; 9:107-16. https://doi.org/10.1034/j.1600-0501.1998.090206.x
  9. Kasabah S, Simunek A, Krug J, Lecaro MC. Maxillary sinus augmentation with deproteinized bovine bone (Bio-Oss) and Impladent dental implant system. Part II. Evaluation of deprotienized bovine bone (Bio-Oss) and implant surface. Acta Medica (Hradec Kralove) 2002;45:167-71.
  10. Maiorana C, Redemagni M, Rabagliati M, Salina S. Treatment of maxillary ridge resorption by sinus augmentation with iliac cancellous bone, anorganic bovine bone, and endosseous implants: a clinical and histologic report. Int J Oral Maxillofac Implants 2000;15:873-8.
  11. Merkx MA, Maltha JC, Freihofer HP. Incorporation of composite bone implants in the facial skeleton. Clin Oral Implants Res 2000;11:422-9. https://doi.org/10.1034/j.1600-0501.2000.011005422.x
  12. Schwartz Z, Weesner T, van Dijk S, Cochran DL, Mellonig JT, Lohmann CH, et al. Ability of deproteinized cancellous bovine bone to induce new bone formation. J Periodontol 2000;71:1258-69. https://doi.org/10.1902/jop.2000.71.8.1258
  13. Barboza EP, Duarte ME, Geolas L, Sorensen RG, Riedel GE, Wikesjo UM. Ridge augmentation following implantation of recombinant human bone morphogenetic protein-2 in the dog. J Periodontol 2000;71:488-96. https://doi.org/10.1902/jop.2000.71.3.488
  14. Rocchietta I, Dellavia C, Nevins M, Simion M. Bone regenerated via rhPDGF-bB and a deproteinized bovine bone matrix: backscattered electron microscopic element analysis. Int J Periodontics Restorative Dent 2007;27:539-45.
  15. Grzesik WJ, Ivanov B, Robey FA, Southerland J, Yamauchi M. Synthetic integrin-binding peptides promote adhesion and proliferation of human periodontal ligament cells in vitro. J Dent Res 1998;77:1606-12. https://doi.org/10.1177/00220345980770080801
  16. Kantlehner M, Schaffner P, Finsinger D, Meyer J, Jonczyk A, Diefenbach B, et al. Surface coating with cyclic RGD peptides stimulates osteoblast adhesion and proliferation as well as bone formation. Chembiochem 2000;1:107-14. https://doi.org/10.1002/1439-7633(20000818)1:2<107::AID-CBIC107>3.0.CO;2-4
  17. Mosher DF. Fibronectin. San Diego: Academic Press; 1989.
  18. Magnusson MK, Mosher DF. Fibronectin: structure, assembly, and cardiovascular implications. Arterioscler Thromb Vasc Biol 1998;18:1363-70. https://doi.org/10.1161/01.ATV.18.9.1363
  19. Corbett SA, Lee L, Wilson CL, Schwarzbauer JE. Covalent cross-linking of fibronectin to fibrin is required for maximal cell adhesion to a fibronectin-fibrin matrix. J Biol Chem 1997;272:24999-5005. https://doi.org/10.1074/jbc.272.40.24999
  20. Grinnell F, Feld M, Minter D. Fibroblast adhesion to fibrinogen and fibrin substrata: requirement for cold-insoluble globulin (plasma fibronectin). Cell 1980;19:517-25. https://doi.org/10.1016/0092-8674(80)90526-7
  21. Corbett SA, Wilson CL, Schwarzbauer JE. Changes in cell spreading and cytoskeletal organization are induced by adhesion to a fibronectin-fibrin matrix. Blood 1996;88: 158-66.
  22. Greiling D, Clark RA. Fibronectin provides a conduit for fibroblast transmigration from collagenous stroma into fibrin clot provisional matrix. J Cell Sci 1997;110:861-70.
  23. Mosher DF, Schad PE, Kleinman HK. Inhibition of blood coagulation factor XIIIa-mediated cross-linking between fibronectin and collagen by polyamines. J Supramol Struct 1979;11:227-35. https://doi.org/10.1002/jss.400110212
  24. Damsky CH. Extracellular matrix-integrin interactions in osteoblast function and tissue remodeling. Bone 1999;25: 95-6. https://doi.org/10.1016/S8756-3282(99)00106-4
  25. Okazaki K, Shimizu Y, Xu H, Ooya K. Blood-filled spaces with and without deproteinized bone grafts in guided bone regeneration. A histomorphometric study of the rabbit skull using non-resorbable membrane. Clin Oral Implants Res 2005;16:236-43. https://doi.org/10.1111/j.1600-0501.2004.01095.x
  26. Camargo PM, Wolinsky LE, Ducar JP, Lagos R, Pirih FQ, Jeffcoat M, et al. The effect of fibronectin and a bone xenograft on regenerative treatment: a feasibility study. Compend Contin Educ Dent 2006;27:560-8.
  27. Lekovic V, Camargo PM, Weinlaender M, Vasilic N, Djordjevic M, Kenney EB. The use of bovine porous bone mineral in combination with enamel matrix proteins or with an autologous fibrinogen/fibronectin system in the treatment of intrabony periodontal defects in humans. J Periodontol 2001;72:1157-63. https://doi.org/10.1902/jop.2000.72.9.1157
  28. Di Bella C, Farlie P, Penington AJ. Bone regeneration in a rabbit critical-sized skull defect using autologous adiposederived cells. Tissue Eng Part A 2008;14:483-90. https://doi.org/10.1089/tea.2007.0137
  29. Schonmeyr BH, Wong AK, Li S, Gewalli F, Cordiero PG, Mehrara BJ. Treatment of hydroxyapatite scaffolds with fibronectin and fetal calf serum increases osteoblast adhesion and proliferation in vitro. Plast Reconstr Surg 2008; 121:751-62. https://doi.org/10.1097/01.prs.0000299312.02227.81
  30. Lee JA, Ku Y, Park YJ, Koo KT, Kim TI, Seol YJ, et al. The biologic effect of fibrin-binding synthetic oligopeptide on periodontal ligament cells. J Korean Acad Periodontol 2009;39:45-52. https://doi.org/10.5051/jkape.2009.39.1.45
  31. Terheyden H, Jepsen S, Moller B, Tucker MM, Rueger DC. Sinus floor augmentation with simultaneous placement of dental implants using a combination of deproteinized bone xenografts and recombinant human osteogenic protein-1. A histometric study in miniature pigs. Clin Oral Implants Res 1999;10:510-21. https://doi.org/10.1034/j.1600-0501.1999.100609.x
  32. Park JB, Lee JY, Park HN, Seol YJ, Park YJ, Rhee SH, et al. Osteopromotion with synthetic oligopeptide-coated bovine bone mineral in vivo. J Periodontol 2007;78:157-63. https://doi.org/10.1902/jop.2007.060200
  33. Gordjestani M, Dermaut L, De Ridder L, De Waele P, De Leersnijder W, Bosman F. Osteopontin and bone metabolism in healing cranial defects in rabbits. Int J Oral Maxillofac Surg 2006;35:1127-32. https://doi.org/10.1016/j.ijom.2006.07.002
  34. Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res 1986;205:299-308.
  35. Frame JW. A convenient animal model for testing bone substitute materials. J Oral Surg 1980;38:176-80.
  36. Hollinger JO, Kleinschmidt JC. The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg 1990;1:60-8. https://doi.org/10.1097/00001665-199001000-00011
  37. Ascherman JA, Foo R, Nanda D, Parisien M. Reconstruction of cranial bone defects using a quick-setting hydroxyapatite cement and absorbable plates. J Craniofac Surg 2008;19:1131-5. https://doi.org/10.1097/SCS.0b013e31817bd83e
  38. Pripatnanont P, Nuntanaranont T, Vongvatcharanon S, Limlertmongkol S. Osteoconductive effects of 3 heattreated hydroxyapatites in rabbit calvarial defects. J Oral Maxillofac Surg 2007;65:2418-24. https://doi.org/10.1016/j.joms.2007.06.619
  39. McAllister BS, Margolin MD, Cogan AG, Buck D, Hollinger JO, Lynch SE. Eighteen-month radiographic and histologic evaluation of sinus grafting with anorganic bovine bone in the chimpanzee. Int J Oral Maxillofac Implants 1999;14: 361-8.
  40. Klinge B, Alberius P, Isaksson S, Jonsson J. Osseous response to implanted natural bone mineral and synthetic hydroxylapatite ceramic in the repair of experimental skull bone defects. J Oral Maxillofac Surg 1992;50:241-9. https://doi.org/10.1016/0278-2391(92)90320-Y
  41. Schlegel AK. Bio-Oss bone replacement material. Longterm results with Bio-Oss bone replacement material. Schweiz Monatsschr Zahnmed 1996;106:141-9.
  42. Skoglund A, Hising P, Young C. A clinical and histologic examination in humans of the osseous response to implanted natural bone mineral. Int J Oral Maxillofac Implants 1997;12:194-9.
  43. Yildirim M, Spiekermann H, Handt S, Edelhoff D. Maxillary sinus augmentation with the xenograft Bio-Oss and autogenous intraoral bone for qualitative improvement of the implant site: a histologic and histomorphometric clinical study in humans. Int J Oral Maxillofac Implants 2001;16:23-33.
  44. Pierschbacher MD, Ruoslahti E. Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Proc Natl Acad Sci U S A 1984;81:5985-8. https://doi.org/10.1073/pnas.81.19.5985
  45. Rooney MM, Farrell DH, van Hemel BM, de Groot PG, Lord ST. The contribution of the three hypothesized integrin- binding sites in fibrinogen to platelet-mediated clot retraction. Blood 1998;92:2374-81.

Cited by

  1. Experimental Model for Bone Regeneration in Oral and Cranio-Maxillo-Facial Surgery vol.27, pp.1, 2010, https://doi.org/10.3109/08941939.2013.817628
  2. The role of peptides in bone healing and regeneration: a systematic review vol.14, pp.1, 2010, https://doi.org/10.1186/s12916-016-0646-y
  3. Fibronectin-Derived Oligopeptide Stimulates Osteoblast Differentiation Through a Bone Morphogenic Protein 2-Like Signaling Pathway vol.88, pp.2, 2017, https://doi.org/10.1902/jop.2016.160294
  4. The use of bioactive peptides to modify materials for bone tissue repair vol.4, pp.3, 2010, https://doi.org/10.1093/rb/rbx011