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Game Based Cooperative Negotiation among Cloud Providers
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ABSTRACT

In recent years, dynamic collaboration (DC) among cloud providers (CPs) is becoming an inevitable approach for the widely
use of cloud computing and to redlize the greatest value of it. In our previous paper, we proposed a combinatorial auction
(CA) based cloud market model called CACM that enables a DC platform among different CPs. The CACM model allows any
CP to dynamically collaborate with suitable partner CPs to form a group before joining an auction and thus addresses the issue
of conflicts minimization that may occur when negotiating among providers. But how fo determine optimal group bidding prices,
how to obtain the stability condition of the group and how to distribute the winning prices/profits among the group members
in the CACM model have not been studied thoroughly. In this paper, we propose fo formulate the above problems of
cooperative negotiation in the CACM model as a bankrupfcy game which is a special type of N-person cooperatfive game.
The stability of the group is analyzed by using the concept of the core and the amount of allocationsto each member of the
group is obtained by using Shapley value. Numerical results are presented to demonsirate the behaviors of the proposed
approaches.

= KeyWords : Dynamic cloud collaboration, Group bidding price, Profit sharing and cooperative game theory

1. Introduction providers  (CPs) restricts  consumers to

simultaneously use multiple or collaborative

The proprietary nature of existing Cloud cloud services. That is, interoperability and

scalability are two major challenging issues for

* 4 3 o Aety AFE T ALy cloud computing. Forming a  dynamic
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expense reduction, avoiding adverse business
impacts (e.g. cloud vendor lock in) and offering
collaborative or portable cloud services to
consumers.

In our previous paper [1], we proposed a
novel combinatorial auction (CA) based cloud
market model called CACM with a new auction
policy that facilitates a virtual organization (VO)
based DC platform among CPs. The new
auction policy in CACM model allows any
primary cloud provider(pCP), the initiator of a
DC, to dynamically collaborate with suitable
partner CPs to form a group before joining an
auction and thus addresses the issue of conflicts
minimization that may occur when negotiating
among providers [2]. They publish their group
bid as a single bid to fulfill the service
requirements completely, along with other CPs,
who publishes separate bids to partially fulfill
the service requirements.This approach creates
more chances to win the auctions for the group
since  collaboration cost (e.g.  network
establishment, information transmission, capital
flow, etc), negotiation time and conflicts among
CPs can be minimized.

However, there are several issues about group
bidding. In [3], the problem of how groups (or
coalitions) are formed is discussed. Another
problem arises after groups (or coalitions) are
formed. How should the resource/profit/cost be
distributed among the members of the group?
What are the criteria for distributing
resource/profit/cost? There are alsoworks such as
resource sharing [4], surplus/cost sharing [5]
which are related to these problems.

In this work we focus on the problem of how
to determine optimal group bidding prices, how
to obtain the stability condition of the group and

how to distribute the winning prices/profits
among the group members in the CACM model.
The decision of the bidding prices of the group
can be solved using resource sharing or
surplus/cost sharing methods (which directly
assigns a price share to each provider). But
directly assigning price shares to provider
sometimes lead to negative profits.

In this paper, we propose to formulate the
problem of cooperative negotiation among Cloud
group members in the CACM model as a
bankruptcy game which is a special type of
N-person cooperative game. The objective is to
fairly allocate the group price and profit share to
each group members. A standard method in
cooperative game theory, namely, the core is
used to obtain the stability condition of the
group. Then, to obtain the solutions (i.e., the
allocated group price and profit shares), Shapley
value is used. Simulation results show that there
exists a dominant strategy for CPs that can let
them obtain maximum profit and also the
compromised profit of each individual CP’s
satisfies each CP’s rationality.

The rest of this paper is organized as follows:
Section 2 presents the related works. Section 3
describes the proposed CACM model. In Section
4, we present bankruptcy game model and
Shapley value for its solution Also the OINP
and profit allocation using core are also
presented in this section. Numerical results are
presented in Section 5. Section 6 states the

conclusions.

2. Related Works

Game-theoretic framework (e.g., N-person
cooperative game) was used to analyze the
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cooperation among supply chain agents [6]. In
[7], a cooperative game of choosing partners and
forming coalitions in the marketplace was
proposed. In [8], the authors employed a
co-evolutionary mechanism to search complex
and large spaces in order to find joint efficiency
between negotiating agents and to evolve
negotiation strategies. A game theoretical
approach was then used to distribute the payoffs
generated from the co-evolutionary approach in
order to find equilibrium. The authors in [9]
evaluate and compare different approaches for
allocating costs to buyers in a combinatorial
auction market using the two key concepts of
cooperative game theory: the nucleolus and
Shapley value. So in the literature cooperative
game theory is used in many areas but very few
works consider using it in determining optimal
group bidding price.

3. Combinatorial Auction (CA)
Based Cloud Market Model
for Dynamic Collaboration
Platform

Here we briefly introduce our cloud market
model, called CACM, as proposed in [1] to
clarify the problem scenario. The proposed
CACM model to enable a DC platform among
CPs is shown in Fig. 1. The CACM model
allows bidders to make groups and submits their
bids for a set of services to auctioneer as a
single bid while also supporting the bidders to
submit bids separately for a set of services. We
define the CACM model in which the main
participants are brokers, users/consumers, cloud

resourcefservice  providers, and trustworthy

auctioneers.

Brokers in the CACM model mediate between
consumers and CPs.The consumers can be
enterprise user or personal user. In the proposed
CACM model, each user can bid a single price
value for different composite/collaborative cloud
services provided by CPs. The responsibility of
an auctioneer includes setting the rules of the
auction and decides the best combination of CPs
who can meet user requirements for a set of

services using a winner determination algorithm.
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(Figure 1) Proposed CACM model for dynamic
collaborative cloud services among CPs

3.1. Terms and Definitions Used in the
CACM Model

3.1.1. The Auction Scheme

We utilize secured generalized Vickrey
auction (SGVA) [10] approach to address the
trust, security and confidentiality issues in
CACM model and a
programming approach proposed in [11] for

dynamic  graph

winner determination algorithm. The winner is
provided the second lowest price.
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3.1.2 The Reservation Price, Market Price
and Profit

The reservation price of a CP is defined as
follows: If a service is sold at its reservation
price, the service providing agent gains zero
profit. If a service is sold at a price lower than
the reservation price, the service providing agent
gets negative profit, and vice versa.The market
price of a service is defined as the regular
individual price (INP) of a CP that includes the
reservation price and profit margin. The profit of
a service provided denotes the difference
between the INPand the reservation price of the

service.

3.1.3. Parameters and Variables

For the convenience of analysis, the parameters
and variables for the CACM models are defined
as follows:

R={R;|j=1..n}:a set of nservice requirements

of consumer

P={P|r=1..m}:a set of m CPs who

participate in the auction as bidders

F;=a cloud provider » who can provide

service /

S(P)=a set of services (S;i..)provided by
any P, where S(P)cR

Q.. (R,0) =payoff function of the user where
R is the service requirements and Q defines
SLAs of each service.

3.2. Group Bidding Price Determination
in the CACM Model

The group bidding price (sometimes called
group price) denotes the price that equals the
summation of all the individual prices inthe
group. For a bidding group the initial group
bidding price (IGBP) can be obtained easily by
asking all the bidding agents of the group to
declare their initial INPs. But this method will
not work since the probable goal group bidding
price (GGBP) should be lower than the IGBP.
The GGBP is set by the pCP to maximize the
group winning probability. The bidding group
needs to reduce its bidding price by a certain
amount to satisfy the GGBP. In this section, we
will present how the group members will
calculate initial individual price and initial group
bidding price.

3.2.1 Initial Individual Price and Group
Bidding Price Determination

CC between
CPU & Memory

CC between other
provider services

Cost of CPU =

]
> © @
CC between = g ‘E_JL o
Memory & CPU o [ =% S
o = < 7]

$ 578) (310) (520
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Application — — -

Storage — —

(Figure 2) Reservation price matrix M
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Let M be a service reservation price matrix of
any cloud providerf,, S be any service in R
(ie.ScR) and G be a group of providers in P
(ie. G2 P). To simplify the auction model, we
assume that any CP can provide at most two
services. The reason is that it is not feasible for
a CP to provide almost all kinds of services.
The matrix M includes costs of 2. provider’s
own services as well as the collaboration costs
(CC) between services of its own and other
providers. Fig. 2 illustrates the matrix M.

We assume that P, provides two services -
CPU and Memory. Let a,(i=1..n) be the cost
of providing any service in M independently, 4;
(i,j=1..ni# j) be the CC between S; and S
services (5.5, €S(P)) and a,(i,k=1.n,i#k)
be the CC between S, and S, services
(S;eS(P)and S5, S(F)). We set nonreciprocal
CC between S(P) services in Mwhich is
practically reasonable. If £ knows other
providers or has some past collaboration
experience with others, it can store true CC of
services with other providers. Otherwise it can
set a high CC for other providers. The CCof
services with other providers in matrix M
isupdated when the providers finish negotiation
and collaboratively provide the services of
consumers in the DC platform.

Let P forms a group G by selecting
appropriate partners where S(f;) isthe set of
services provided by G and S(F,)cRGcP.
Now the initial INP of any P, in group G can

be determined as follows:

#5t) = Csiny + 77 (R)

G . . .
where Csp) is the total reservation price

incurred by P to provide S(P.)services
(S(P)cR)and 7°(P)is the expected profit of

. . G .
P. The total reservation price Csz) s

s

calculated as follows by using the matrix M :

G
C = o+ o+
S(F) Sl.eg(Pr)a” SI.EE(P,) sj%(P,)aU

)y )y g + )y > ay
S;e8(R.) SgeS(PEM\S(B) S8R, S, £5(Pg)

where, i,j,g.k=1.n and i#j=g#k

The first term in the equation (2) is the cost
of providing services S(F.).The second term is

the total collaboration cost between S(P)

ai
Services. The term S;€S(B.) S,S(P;)\S(P,) < denotes the
total collaboration cost of services of P. with

other providers in the group. The term

Py )skg(:p(,)a’k refers to the total collaboration cost
between services of other CPs outside of the
group with whom P, needs to collaborate. This
term can be zero if the group can satisfy all the
service requirements of consumer. Since P,

knows other group members, it can find the true

ai
value of the term;gs(gv)sggs(ﬂy)\s(g_) ¢ . MOI'COVCI',
if P applies any good strategy to form the

groupG, it is possible for P to minimize

2

S,€S(P) S,eS(P)\S(F) * HGIICG, this group G has
more chances to win the auction as compare to
other providers who submit separate bids to
partially fulfill the service requirements. So the
IGBP for the group G can be calculated as

follows:

eh= QB FEstE| (112539)
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¢§;(PG) = z(cg(P’_) +7G(P,)),\1P,. eGr=1.1

where [ is the no. of providers in G and

7°(P)is the expected profit of any provider r in
the group.

Now to satisfy the requirements of probable
GGBP, each CP in the group needs to reduce its
initial INP from IGBP by certain amount. But
how all the CPs of the group cut their INPs
optimally so that the group becomes stable? An
optimal Individual price (OINP) allocation
algorithm is needed which will be presented in

the next section.

4. Determining Optimal
Individual Price Allocation
for Goal Group Priceand
Profit Sharing in the CACM
Model

The objective is to fairly allocate the OINPsto
each group members when their summations
satisfy the probable goal bidding price but the
sum of their initial individual pricesexceeds the
probable GGBP. Therefore, we use a bankruptcy
game formulation to obtain the solution of the
optimal individual price allocation problem.

In this section, we first describe a standard
bankruptcy game. To obtain the solution of this
game, the coalition form and the characteristic
function for an N-person cooperative game are
presented. Then, the stability of the game is
analyzed through the core. Next, the solution of
the bankruptcy game formulation is obtained by
Shapley value. Then the optimal individual price
allocation algorithm and a negotiation algorithm

are presented. The negotiation algorithm ensures
that all the group members agree to the optimal
individual price allocation. Finally the profit
sharing method is described.

4.1. Bankruptcy Game

In a bankruptcy game problem, a certain
amount of money (estate) has to be divided
among the agents who have a claim to it, when
the sum of these claims exceeds the estate. This
conflicting situation introduces an N-person
game where the players of the game are seeking
for the equilibrium point to divide the money.

The standard bankruptcy game (N, E, ¢) can
be expressed [12] by a finite set of agents N, a
real positive number E which denotes the
amount of money and a nonnegative vector

cerRY of <claims where the condition

2ieN¢;2E If x, denotes the solution (i.e.,
amount of money distributed to agent i), the rule
of this game can be expressed as follows:

0<x <c, VieN

th.:E

ieN

4.2. Coalition Form and Characteristic
Function

A coalition always exists in a bankruptcy
game so that the agents (i.e., players) can
cooperate with each other to gain better benefit.
Also the bankruptcy game consists of
transferable utility which allows side payments
to be made among the players [12]. This side
payment might be used by the players to reach
the best strategy. Also, the payoff of coalition is
expressed by the characteristic function. The
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coalition form of an N-person game is defined
by the pair (N, v) where v is a characteristic
function specifying the value created by different
subsets of the players in the game. For the
bankruptcy game that we are considering here
the characteristic function can be defined as
follows [13]:

v(S) = max(O,E - ZC,J

Jjes
for all possible coalition of § (ST N).

4.3. The Core

The core in a N-person cooperative game is
generally used to obtain stability region for the
solution. In this case, the concept of imputation
must be established. Let the payoff vector
X ={x,%;.....%;......x, } denote the amount received

by agent i. This payoff vector is group rational

it 2 x=v(N) In particular, the highest total
payoff can be achieved by forming a coalition
among all agents. Also, the payoff vector is
individually rational if x,2v({i}). That is, an
agent will not agree to receive money less than
that the agent could obtain without coalition.
Then, the imputation is defined as the payoff
vectors that is both group rational and
individually rational, namely [12]

P= {x = {3 Xy} 2 x; =v(N), and x; > v({i}), Vi e N}
ieA
An imputation X is unstable with coalition S

if V(8)>2.% . Specifically, if the imputation

is unstable, there is at least one agent who is

unsatisfied due to the coalition. Then, the core is
defined as the set C of stable imputations and

can be expressed mathematically as follows

[11]:

C=qx={x,.... xn}|xePand[EZSxiZV(S),VSCN)

The significance of the core comes from the
fact that every imputation in the core renders
the grand coalition stable. However, it may
contain several points and in some cases it
could be empty. Therefore, the solution that
provides the most preferable distribution strategy
is required. In this paper, we apply Shapley
value which is one of the methods to obtain the

solution of an N-person cooperative game.

4.4. Shapley Value

The Shapley value is generally used to find
the solution of an N-person cooperative game
since the computational complexity of this
method is small. To compute Shapley value, let
us define the value function ¢(v)as the worth or
value of agent i in the game with characteristic

function v, ie.,$=14.-@,.4,}. The Shapley
valuecan be obtained by considering the money
that an agent receives depending on the order
that agent joins the coalition. In particular, the
Shapley value is the average payoff to an agent
if the agents enter into thecoalition in a

completely random order [14]. The Shapley
value ¢=1{4,..4...4,} can be computed as
follows:

S|-DW(n—1|S)!
HM=_ % WW(S)—v(S—m»

ScA,ieA n!

ron
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where n is the number of agents in the game,
S is a coalition in the game containing agent i,

S—1{i} is the coalition consisting of all agents
from S, except for i, and |S| indicates the
number of elements in the set S

4.5. Optimal Individual Price Allocation
Algorithm for Goal Group Bidding
Price

Based on a standard bankruptcy game as
described before, we propose an optimal
individual price (OINP) allocation algorithm for
the CPs in the group. Here, the goal group
bidding price (GGBP) is analogous to the
money or estate that has to be divided among
the CPs and INPs are the claims of CPs. This
situation leads to the similar conflict as in the
bankruptcy problem in which the summation of
INPs exceeds the GGBP. So we need to find
OINP allocation that makes the group stable by
satisfying goal group bidding price. The
notations and the descriptions of the variables
for the bankruptcy game and the optimal
individual price allocation algorithm are shown
in Table I. The optimal individual priceallocation
algorithm will be run by the pCP and it should
know the following two parameters before
running the algorithm:

* Initial individual price information of
partner CPs from their website and
existing market

* Probable goal group bidding price Géss,,
that can maximize the group winning
probability

Now the steps of optimal individual price

allocation algorithm are as follows:

Step 1: Calculate the characteristic functions
of all the coalitions using the
equation (5).

Step 2: Calculate the core and Shapely value
using the equation (7) and (8) and

2% = G,

check the condition 4 Jand

x,€eC,VieS,Sc N, ie. the Shapley
value % or Xiis in the core and thus

the solution is stable. Here *iis the
optimal individual price allocation to
agent iand C is the core.

(Table 1) Notations and descriptions of the
variables for the standard bankruptcy game and
proposed optimal individual price (OINP)
allocation algorithm

Standard Bankruptcy OINP Allocation

Variables Came

n Total number of agents | Total number of CPs

M Money (estate) GGBP
N Set of agents Set of CPs
¢ Claims of agent i INP

Solution of money OINP allocated to
! distributed to agent i |agent i in the group

4.6. The Negotiation Algorithm

As we know, in a DC platform, each of the
group members must agree with the OINP
allocation of others against a setof its own
policies, some disagreements or conflicts may
arise among each other. So anegotiation
algorithm is needed to reduce the conflicts.

One of the important factors that need to be
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considered while designing a negotiation
algorithm for a DC platform is the number of
times the eContract need to be reviewed by
participants before reaching an agreement. We
use an efficient sequential contract negotiation
algorithm, called Conflict Neighboring Algorithm
(CNA) as proposed in [2]. The CNA exploits
the concept of localizing re-negotiation process
so that the conflicting parties become neighbors
to each other. In the CACM model, the group
members know each other very well and so it is
possible that they may reduce their collaboration
costs and thus can agree with the optimal
individual price allocation of each other in a
very short time as compare to the existing

approaches.

4.7. Profit Sharing in the CACM Model

As we use second price auction scheme in the
CACM model, the wining price or profit of a
group that wins an auction will be more than
their GGBP. So every member of the group will
get the amount equal to their OINP allocation
and the surplus amount will be divided among
each member using the proportional rule, which
is probably the best known and most widely
used solution concept. It distributes awards

proportionally to claims. It is defined as follows:

for all (N,E, c), P(N.E,0)=Ac  with

5. Simulations and Results

We first show an example of how to calculate

the core and Shapely value to determine the

OINP allocation and profit sharing among three
CPs in a group. Then we present the
performance of our CACM model with the
existing CA model. We implemented the CACM
model (winner determination algorithm) with
new auction policy in Visual C++. One of the
main challenges in the CACM model is the lack
of real-world input data. So we conduct the
experiments using synthetic data.

5.1. Synthetic Data Generation

Many CPs (m= 100) with different services
and also some consumer requirements (R= 3-10)
are generated randomly. We assume that each
CP can provide at most twoservices so that they
have to collaborate with others to fulfill the
service requirements R. Each service may have
one or more CPs. Based on R, CPs are selected.
So it is possible that every CP may not provide
the required R. Also the cost of any independent
service is randomly generated from $80 to $150.
The ranges of CC of services as well as the
profit are set within $10 - $30 and $10 - $20
respectively. If any provider has more
collaboration experience with other providers,
the CC can be minimized. Thus the initial
individual price with reservation price and profit
is generated for each provider and it is varied
based on CC in different auctions.

5.2. Examples of the Core and Shapley
Value for Determining OINP
Allocations and Profit Sharing

In this section, we demonstrate the calculation

of the core and the Shapley value to determine

G
the OINP allocation among three CPs. Let ¢S(P,.)

ron
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(Figure 4) Examples of INP allocations among
three CPs by varying the GGBP using the core
and Shapley value

G
be the INP of any CP r in group G and ¢S(PG)
be the IGBP. We assume three providers in a

G
group where ¢S(Pl)= 2508, ¢§(pz)= 200$, and

¢sG(p3) = 300$. Let us assume that the probable

G
GGBP, Gfsr,)= 6008. As the IGBP ¥y, =

7508, is greater than G¢SG(PG), all the group
members need to reduce their INPs to some
extent so that GGBP’s requirement can be
fulfilled. According to equation (5), the
characteristic functions of all coalitions are as
follows:
w(P)=1008 v(P,P,)=300$
v(¢)=0 v(P)=50$8 v(P,P)=400%
v(4)=6008 y(P)=1508 (P, P,)=350$

Since the number of CPs is three, the core
can be presented by barycentric coordinates as
in Fig. 3. In this triangle representation, the

plane of the plot is denoted by

Xp +Xp +x, =V(N)=600$ and the edges of the
triangle are the characteristic functionsv({i}).
v({h}) =50

For example, represents  the

uppermost edge. The constraint of the core (i.e.

> x, = v(S)

pre ) is the line drawn across the
triangle.

For example, Xr *Xp =V(F,P)=3508 represents
the horizontal line. Based on these constraints,
some areas represent the unstable imputations as
shown in Fig. 3. For example, the topmost area

corresponds to an unstable imputation where the

satisfaction for the CPs PBand £ is not
achieved. There is an area (the middle area) that
refers to the core (i.e., the solution space that
makes the game stable). According to equation
(8), the Shapley value (i.e. INP allocation) is
¢=1{200,160,240} ~ Next, we show some
examples of INP allocations by varying the
GGBP from 600$ to 730$ as shown in Fig. 4.
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(Figure 6) Economic efficiency of the CACM model
as compared to that of the existing CA model

In Fig. 5, we show some examples of profit
distributions among three CP members based on
the INP allocations obtained by Shapley value
for GGBP = 600$.

Our CACM model using proposed approach
of cooperative negotiation is beneficial to the
consumers as the total price of the services
decrease. Fig. 6 shows the economic efficiencies
of the two auction-based markets. It can be seen
from Fig. 6 that when the number of auctions
increases, the CACM model reduces the total

service price to consumers as compared to the
existing CA model for the same number of
service requirements. The main reason is that
CCs among the group members are lower as
they know each other very well in the group
and thus the total service price is reduced.

6. Conclusions

In this paper, we present the problem of
group bidding price determin ation and profit
sharing in the CACM model that enables a DC
platform among CPs. We formulate these
problems as bankruptcy games. The stability of
the optimal individual price and profit
allocations for group members have been
analyzed by using the concept of the core and
the amounts of the allocations for each member
of the group have been obtained from the
Shapley value. We present several examples of
optimal individual price allocation and profit
sharing in the CACM model. Also the
performance of the CACM model is compared
with the existing CA model in terms of
economic efficiency. In future, we will work on
finding an optimal resource co-allocation
algorithm for providing the collaborative service

in a DC environment.
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