Performance Analysis of Maximum Zero-Error Probability Algorithm for Blind Equalization in Impulsive Noise Channels

충격성 잡음 채널의 블라인드 등화를 위한 최대 영-확률 알고리듬에 대한 성능 분석

  • 김남용 (강원대학교 전자정보통신공학부)
  • Received : 2010.04.05
  • Accepted : 2010.08.02
  • Published : 2010.10.31

Abstract

This paper presentsthe performance study of blind equalizer algorithms for impulsive-noise environments based on Gaussian kernel and constant modulus error(CME). Constant modulus algorithm(CMA) based on CME and mean squared error(MSE) criterion fails in impulsive noise environment. Correntropy blind method recently introduced for impulsive-noise resistance has shown in PAM system not very satisfying results. It is revealed in theoretical and simulation analysis that the maximization of zero-error probability based on CME(MZEP-CME) originally proposed for Gaussian noise environments produces superior performance in impulsive noise channels as well. Gaussian kernel of MZEP-CME has a strong effect of becoming insensitive to the large differences between the power of impulse-infected outputs and the constant modulus value.

이 논문은 충격성 잡음 환경에 대해 상수 모듈러스 오차(CME)와 가우시안 커널에 근거한 블라인드 등화 알고리듬의 성능 분석을 보이고 있다. CME와 평균 자승 오차(MSE)에 근거한 상수 모듈러스 알고리듬(CMA)는 충격성 잡음 환경에서 수렴에 실패한다. 이런 충격성 잡음에 대한 내항성을 위해 최근에 소개된 코렌트로피 블라인드 등화 알고리듬도 PAM 변조 방식에서는 만족할 만한 결과를 보이지 못한다. 원래 가우시안 잡음 환경을 위해 제안되었던 최대 영-확률 블라인드 알고리듬(MZEP-CME)이 충격성 잡음 환경에서도 탁월한 성능을 보인다는 것이 이 논문의 이론적, 그리고 시뮬레이션을 통한 분석에 의해 입증된다. MZEP-CME 알고리듬의 가우시안 커널은 충격성 잡음에 의해 발생하는 출력 신호 전력과 CME 사이의 큰 차이에 민감하게 반응하지 못하게 하는 강한 영향력을 발휘한다.

Keywords

References

  1. Sedarat and K. Fisher, "Multicarrier communication in presence of biased- Gaussian noise sources", Signal Processing, Vol. 88, July 2008, pp. 1627-1635. https://doi.org/10.1016/j.sigpro.2007.11.025
  2. S. Unawong, S. Miyamoto, and N. Morinaga, "A novel receiver design for DS-CDMA systems under impulsive radio noise environments", IEICE Trans. Comm., Vol. E82-B, June 1999, pp. 936-943.
  3. W. M. Moh, Y. Chen, "Multicasting flow control for hybrid wired/wireless ATM networks," Performance Evaluation, Vol. 40, Mar. 2000, pp. 161-194. https://doi.org/10.1016/S0166-5316(99)00074-7
  4. L. M. Garth, "A dynamic convergence analysis of blind equalization algorithms", IEEE Trans. on Comm., Vol. 49, April. 2001, pp. 624-634 https://doi.org/10.1109/26.917769
  5. F. Mazzenga, "Channel estimation and equalization for M-QAM transmission with a hidden pilot sequence", IEEE Trans. on Broadcasting, Vol. 46, June. 2000, pp. 170-176. https://doi.org/10.1109/11.868934
  6. J. R. Treichler and B. Agee, "A new approach to multipath correction of constant modulus signals", IEEE Trans. Acoust., Speech, Signal Process. Vol. ASSP-31, Nov. 1983, pp. 349-372.
  7. J.C. Principe, D. Xu and J. Fisher, Information Theoretic Learning, in: S. Haykin, Unsupervised Adaptive Filtering, Wiley, New York, Vol. I, 2000, pp. 265-319.
  8. D. Erdogmus, and J.C. Principe, "An Entropy Minimization algorithm for Supervised Training of Nonlinear Systems", IEEE Trans. Signal Processing, Vol. 50, July, 2002, pp. 1780-1786. https://doi.org/10.1109/TSP.2002.1011217
  9. I. Santamaria, D. Erdogmus, and J. C. Principe, "Entropy Minimization for Supervised Digital Communications Channel Equalization, IEEE Trans. Signal Processing, Vol. 50, May, 2002, pp. 1184-1192. https://doi.org/10.1109/78.995074
  10. N. Kim, K. H. Jeong and L. Yang, "Maximization of Zero-Error Probability for Adaptive Channel Equalization", Journal of Communications and Netweorks, Feb. 2010, Accepted.
  11. I. Santamaria, P. P. Pokharel, and J. C. Principe, "Generalized correlation function: Definition, properties, and application to blind equalization", IEEE Trans. Signal Processing, Vol. 54, June 2006, pp. 2187-2197. https://doi.org/10.1109/TSP.2006.872524
  12. K. Koike and H. Ogiwara, "Application of Turbo TCM codes for impulsive noise channel", IEICE Trans. Fundamentals, Vol. E81-A, Oct. 1998, pp. 2032-2039.