DOI QR코드

DOI QR Code

Inhaled Nanoparticles and Occupational Health: A Review

흡입된 나노입자와 건강: 고찰

  • Ku, Bon-Ki (Division of Applied Research and Technology, National Institute for Occupational Safety and Health)
  • 구본기 (미국 직업안전보건 연구원, 응용연구 기술과)
  • Received : 2010.06.27
  • Accepted : 2010.08.11
  • Published : 2010.08.30

Abstract

In many fields, nanotechnology is leading to the development of purposely-engineered nanoparticles and devices demonstrating new, unique and non-scalable properties. However, concern has been expressed that these same properties may present unique challenges in terms of the potential health impact. Airborne particles associated with engineered nanoparticles are of particular concern, as they can readily enter the body through inhalation. Research into the potential occupational health risks associated with inhaling engineered nanoparticles is actively being conducted in the U.S. and globally. In this article, the potential occupational health effects of inhaled nanoparticles and methods for measuring exposure to nanoparticles are discussed. Critical research needs in this field are also briefly addressed.

Keywords

References

  1. Oberdorster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W., Lai, D., Olin, S., Monteiro-Riviere, N., Warheit, D. and Yang, H. : Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle and Fibre Toxicology, 2(8), doi:10.1186/1743-8977-2-8, 2005.
  2. Maynard, A. D. : Responsible nanotech at work. Nanotoday. A Materials Today Suppliment. Dec. 2004.
  3. The Space Elevator, http://www.niac.usra.edu/files/studies/final_report/521Edwards.pdf
  4. Shvedova, A. A., Kisin, E. R., Mercer, R., Murray, A. R., Johnson, V. J., Potapovich, A. I., Tyurina, Y. Y., Gorelik, O., Arepalli, S., Schwegler-Berry, D., Hubbs, A. F., Antonini, J., Evans, D. E., Ku, B. K., Ramsey, D., Maynard, A., Kagan, V. E., Castranova, V., Baron, P.: Unusual inflammatory and fibrogenic pulmonary responses to single walled carbon nanotubes in mice. American Journal of Physiology - Lung Cellular and Molecular Physiolog, 289, L698-L708, 2005. https://doi.org/10.1152/ajplung.00084.2005
  5. Lam, C. W., James, J. T., McCluskey, R. and Hunter, R. L. : Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicological Sciences, 77, 126-134, 2004.
  6. Roco, M. C. : Environmentally responsible development of nanotechnology. Environmental Science & Technology, 39(5), 106A-112A, 2005. https://doi.org/10.1021/es053199u
  7. Maynard, A. D. and Kuempel, E. D. : Airborne nanostructured particles and occupational health. Journal of Nanoparticle Research, 7, 587-614, 2005. https://doi.org/10.1007/s11051-005-6770-9
  8. Oberdorster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W. and Cox, C. : Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicology, 16, 437-445, 2004. https://doi.org/10.1080/08958370490439597
  9. Oberdorster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Lunts, A., Kreyling, W. and Cox, C. : Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. Journal of Toxicology and Environmental Health A, 65, 1531-1543, 2002. https://doi.org/10.1080/00984100290071658
  10. Tran, C. L., Buchanan, D., Cullen, R. T., Searl, A., Jones, A. D. and Donaldson, K. : Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhalation Toxicology, 12, 1113-1126, 2000. https://doi.org/10.1080/08958370050166796
  11. Brown, D. M., Wilson, M. R., MacNee, W., Stone, V. and Donaldson, K. : Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicology and Applied Pharmacology, 175(3), 191-199, 2001. https://doi.org/10.1006/taap.2001.9240
  12. Duffin, R., Tran, C. L., Clouter, A., Brown, D. M., MacNee, W., Stone, V. and Donaldson, K. : The importance of surface area and specific reactivity in the acute pulmonary inflammatory response to particles. Annals of Occupational Hygiene, 46, 242-245, 2002. https://doi.org/10.1093/annhyg/46.suppl_1.242
  13. Renwick, L. C., Brown, D., Clouter, A. and Donaldson, K. : Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particles. Occupational and Environmental Medicine, 61, 442-447, 2004. https://doi.org/10.1136/oem.2003.008227
  14. Barlow, P. G., Clouter-Baker, A. C., Donaldson, K., Mac-Callum, J. and Stone, V. : Carbon black nanoparticles induce type II epithelial cells to release chemotaxins for alveolar macrophages. Particle and Fibre Toxicology, 2(11), 1-14, 2005. https://doi.org/10.1186/1743-8977-2-1
  15. Oberdorster, G., Ferin, J. and Lehnert, B. E. : Correlation between particle size, in vivo particle persistence, and lung injury. Environmental Health Perspectives, 102(Suppl 5), 173-179, 1994. https://doi.org/10.1289/ehp.94102s5173
  16. Sayes, C., Fortner, J., Guo, W., Lyon, D., Boyd, A., Ausman, K., Tao, Y. J., Sitharaman, B., Wilson, L. J., Hughes, J. B., West, J. L. and Colvin, V. L. : The differential cytotoxicity of water-soluble fullerenes. Nano Letters, 4, 1881-1887, 2004. https://doi.org/10.1021/nl0489586
  17. Poland, C. A., Duffin, R., Kinloch, I., Maynard, A., Wallace, W. A. H., Seaton, A., Stone, V., Brown, S., MacNee, W. and Donaldson, K. : Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotechnology, 3(7), 423-428, 2008. https://doi.org/10.1038/nnano.2008.111
  18. Takagi, A., Hirose, A., Nishimura, T., Fukumori, N., Ogata, A., Ohashi, N., Kitajima, S. and Kanno, J. : Induction of mesothelioma in p53+/- mouse by intraperitoneal application of multi-walled carbon nanotube. The Journal of Toxicological Sciences, 33, 105-116, 2008. https://doi.org/10.2131/jts.33.105
  19. NIOSH Document. Approaches to Safe Nanotechnology: An Information Exchange with NIOSH, 2006. http://www.cdc.gov/niosh/topics/nanotech/
  20. NIOSH Document. Approaches to Safe Nanotechnology: Managing the Health and Safety Concerns Associated with Engineered Nanomaterials [DHHS (NIOSH) Publication No. 2009-125], 2009. http://www.cdc.gov/niosh/docs/2009-125/pdfs/2009-125.pdf
  21. Ku, B. K. and Maynard, A. D. : Comparing aerosol surface-area measurement of monodisperse ultrafine silver agglomerates using mobility analysis, transmission electron microscopy and diffusion charging. Journal of Aerosol Science, 36, 1108-1124, 2005. https://doi.org/10.1016/j.jaerosci.2004.12.003
  22. Ku, B. K. : Determination of the ratio of diffusion charging based surface area to geometric surface area for spherical particles in the size range of 100-900 nm. Journal of Aerosol Science, 41(9), 835-847, 2010. https://doi.org/10.1016/j.jaerosci.2010.05.008
  23. Fissan, H., Neumann, S., Trampe, A., Pui, D. Y. H. and Shin, W. G. : Rationale and principle of an instrument measuring lung deposited nanoparticle surface area. Journal of Nanoparticle Research, 9, 53-59, 2007.
  24. Ku, B. K., Emery, M. S., Maynard, A. D., Stolzenburg, M. and McMurry, P. H. : In situ structure characterization of airborne carbon nanofibers by a tandem mobility-mass analysis. Nanotechnology, 17, 3613-3621, 2006. https://doi.org/10.1088/0957-4484/17/14/042
  25. Maynard, A. D., Ku, B. K., Emery, M. S., Stolzenburg, M. R. and McMurry, P. H. : Measuring particle size-dependent physicochemical structure in airborne single walled carbon nanotube agglomerates. Journal of Nanoparticle Research, 9, 85-92, 2007.
  26. Evans, D. E., Ku, B. K., Birch, M. E. and Dunn, K. H. : Aerosol monitoring during carbon nanofiber production: Mobile direct-reading sampling. The Annals of Occupational Hygiene, 54(4), 514-531, 2010. https://doi.org/10.1093/annhyg/meq015
  27. Bello, D., Wardle, B. L., Yamamoto, N., deVilloria, R. G., Garcia, E. J., Hart, A. J., Ahn, K., Ellenbecker, M. J. and Hallock, M. : Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes. Journal of Nanoparticle Research, 11, 231-249, 2009. https://doi.org/10.1007/s11051-008-9499-4
  28. Heitbrink, W. A., Evans, D. E., Ku, B. K., Maynard, A. D., Slavin, T. and Peters, T. : Relationship among particle number, surface area, and respirable mass concentration in an automotive engine manufacturing. Journal of Occupational and Environmental Hygiene, 6, 19-31, 2009.
  29. Evans, D. E., Heitbrink, W. A., Slavin, T. J. and Peters, T. M. : Ultrafine and respirable particles in an automotive grey iron foundry. The Annals of Occupational Hygiene, 52, 9-21, 2008.
  30. Han, J. H., Lee, E. J., Lee, J. H., So, K. P., Lee, Y. H., Bae, G. N., Lee, S. B., Ji, J. H., Cho, M. H. and Yu, I. J. : Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility. Inhalation Toxicology, 20, 741-749, 2008. https://doi.org/10.1080/08958370801942238
  31. Maynard, A. D. and Aitken, R. J. : Assessing exposure to airborne nanomaterials: Current abilities and future requirements. Nanotoxicology, 1(1), 26-41, 2007. https://doi.org/10.1080/17435390701314720
  32. Methner, M. M., Birch, M. E., Evans, D. E. and Hoover, M. D. : NIOSH Health Hazard Evaluation Report. HETA #2005-0291-3025. University of Dayton Research Institute (UDRI), Dayton Ohio, October, 2006. http://www.cdc.gov/niosh/hhe/reports/pdfs/2005-0291-3025.pdf
  33. Mazzuckelli, L. F. (Ed.), Methner, M. M., Birch, M. E., Evans, D. E., Ku, B. K., Crouch, K. G. and Hoover, M. D. : Case study: Identification and characterization of potential sources of worker exposure to carbon nanofibers during polymer composite laboratory operations. Journal of Occupational and Environmental Hygiene, 4(12), D125-D130, 2007. https://doi.org/10.1080/15459620701683871
  34. Maynard, A. D., Aitken, R. J., Butz, T., Colvin, V., Donaldson, K., Oberdorster, G., Philbert, M. A., Ryan, J., Seaton, A., Stone, V., Tinkle, S. S., Tran, L., Walker, N. J. and Warheit, D. B. : Safe handling of nanotechnology. Nature, 444, 267-269, 2006. https://doi.org/10.1038/444267a
  35. U.S. Environmental Protection Agency. Nanomaterial research strategy. Washington, D.C: Office of Research and Development, U.S. Environmental Protection Agency. EPA 620/K-09/011, 2009.
  36. Hirst, N., Brocklebank, M. and Ryder, M. : Containment systems: a design guide. Warwickshire, UK: Institution of Chemical Engineers (IChemE), 2002.
  37. ACGIH : Industrial ventilation: a manual of recommended practice. 26th edn. Cincinnati, OH. ACGIH Signature Publications, 2007.
  38. Old, L. and Methner, M. M. : Engineering case report: effectiveness of local exhaust ventilation (LEV) in controlling engineered nanomaterial emissions during reactor cleanout operations. Journal of Occupational and Environmental Hygiene, 5, D63-D69, 2008. https://doi.org/10.1080/15459620802059393
  39. Ku, B. K., Maynard, A. D., Baron, P. A. and Deye, G. J. : Observation and measurement of anomalous responses in a differential mobility analyzer caused by ultrafine fibrous carbon aerosols. Journal of Electrostatics, 65(8), 542-548, 2007. https://doi.org/10.1016/j.elstat.2006.10.012