References
- Oberdorster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W., Lai, D., Olin, S., Monteiro-Riviere, N., Warheit, D. and Yang, H. : Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle and Fibre Toxicology, 2(8), doi:10.1186/1743-8977-2-8, 2005.
- Maynard, A. D. : Responsible nanotech at work. Nanotoday. A Materials Today Suppliment. Dec. 2004.
- The Space Elevator, http://www.niac.usra.edu/files/studies/final_report/521Edwards.pdf
- Shvedova, A. A., Kisin, E. R., Mercer, R., Murray, A. R., Johnson, V. J., Potapovich, A. I., Tyurina, Y. Y., Gorelik, O., Arepalli, S., Schwegler-Berry, D., Hubbs, A. F., Antonini, J., Evans, D. E., Ku, B. K., Ramsey, D., Maynard, A., Kagan, V. E., Castranova, V., Baron, P.: Unusual inflammatory and fibrogenic pulmonary responses to single walled carbon nanotubes in mice. American Journal of Physiology - Lung Cellular and Molecular Physiolog, 289, L698-L708, 2005. https://doi.org/10.1152/ajplung.00084.2005
- Lam, C. W., James, J. T., McCluskey, R. and Hunter, R. L. : Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicological Sciences, 77, 126-134, 2004.
- Roco, M. C. : Environmentally responsible development of nanotechnology. Environmental Science & Technology, 39(5), 106A-112A, 2005. https://doi.org/10.1021/es053199u
- Maynard, A. D. and Kuempel, E. D. : Airborne nanostructured particles and occupational health. Journal of Nanoparticle Research, 7, 587-614, 2005. https://doi.org/10.1007/s11051-005-6770-9
- Oberdorster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W. and Cox, C. : Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicology, 16, 437-445, 2004. https://doi.org/10.1080/08958370490439597
- Oberdorster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Lunts, A., Kreyling, W. and Cox, C. : Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. Journal of Toxicology and Environmental Health A, 65, 1531-1543, 2002. https://doi.org/10.1080/00984100290071658
- Tran, C. L., Buchanan, D., Cullen, R. T., Searl, A., Jones, A. D. and Donaldson, K. : Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhalation Toxicology, 12, 1113-1126, 2000. https://doi.org/10.1080/08958370050166796
- Brown, D. M., Wilson, M. R., MacNee, W., Stone, V. and Donaldson, K. : Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicology and Applied Pharmacology, 175(3), 191-199, 2001. https://doi.org/10.1006/taap.2001.9240
- Duffin, R., Tran, C. L., Clouter, A., Brown, D. M., MacNee, W., Stone, V. and Donaldson, K. : The importance of surface area and specific reactivity in the acute pulmonary inflammatory response to particles. Annals of Occupational Hygiene, 46, 242-245, 2002. https://doi.org/10.1093/annhyg/46.suppl_1.242
- Renwick, L. C., Brown, D., Clouter, A. and Donaldson, K. : Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particles. Occupational and Environmental Medicine, 61, 442-447, 2004. https://doi.org/10.1136/oem.2003.008227
- Barlow, P. G., Clouter-Baker, A. C., Donaldson, K., Mac-Callum, J. and Stone, V. : Carbon black nanoparticles induce type II epithelial cells to release chemotaxins for alveolar macrophages. Particle and Fibre Toxicology, 2(11), 1-14, 2005. https://doi.org/10.1186/1743-8977-2-1
- Oberdorster, G., Ferin, J. and Lehnert, B. E. : Correlation between particle size, in vivo particle persistence, and lung injury. Environmental Health Perspectives, 102(Suppl 5), 173-179, 1994. https://doi.org/10.1289/ehp.94102s5173
- Sayes, C., Fortner, J., Guo, W., Lyon, D., Boyd, A., Ausman, K., Tao, Y. J., Sitharaman, B., Wilson, L. J., Hughes, J. B., West, J. L. and Colvin, V. L. : The differential cytotoxicity of water-soluble fullerenes. Nano Letters, 4, 1881-1887, 2004. https://doi.org/10.1021/nl0489586
- Poland, C. A., Duffin, R., Kinloch, I., Maynard, A., Wallace, W. A. H., Seaton, A., Stone, V., Brown, S., MacNee, W. and Donaldson, K. : Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotechnology, 3(7), 423-428, 2008. https://doi.org/10.1038/nnano.2008.111
- Takagi, A., Hirose, A., Nishimura, T., Fukumori, N., Ogata, A., Ohashi, N., Kitajima, S. and Kanno, J. : Induction of mesothelioma in p53+/- mouse by intraperitoneal application of multi-walled carbon nanotube. The Journal of Toxicological Sciences, 33, 105-116, 2008. https://doi.org/10.2131/jts.33.105
- NIOSH Document. Approaches to Safe Nanotechnology: An Information Exchange with NIOSH, 2006. http://www.cdc.gov/niosh/topics/nanotech/
- NIOSH Document. Approaches to Safe Nanotechnology: Managing the Health and Safety Concerns Associated with Engineered Nanomaterials [DHHS (NIOSH) Publication No. 2009-125], 2009. http://www.cdc.gov/niosh/docs/2009-125/pdfs/2009-125.pdf
- Ku, B. K. and Maynard, A. D. : Comparing aerosol surface-area measurement of monodisperse ultrafine silver agglomerates using mobility analysis, transmission electron microscopy and diffusion charging. Journal of Aerosol Science, 36, 1108-1124, 2005. https://doi.org/10.1016/j.jaerosci.2004.12.003
- Ku, B. K. : Determination of the ratio of diffusion charging based surface area to geometric surface area for spherical particles in the size range of 100-900 nm. Journal of Aerosol Science, 41(9), 835-847, 2010. https://doi.org/10.1016/j.jaerosci.2010.05.008
- Fissan, H., Neumann, S., Trampe, A., Pui, D. Y. H. and Shin, W. G. : Rationale and principle of an instrument measuring lung deposited nanoparticle surface area. Journal of Nanoparticle Research, 9, 53-59, 2007.
- Ku, B. K., Emery, M. S., Maynard, A. D., Stolzenburg, M. and McMurry, P. H. : In situ structure characterization of airborne carbon nanofibers by a tandem mobility-mass analysis. Nanotechnology, 17, 3613-3621, 2006. https://doi.org/10.1088/0957-4484/17/14/042
- Maynard, A. D., Ku, B. K., Emery, M. S., Stolzenburg, M. R. and McMurry, P. H. : Measuring particle size-dependent physicochemical structure in airborne single walled carbon nanotube agglomerates. Journal of Nanoparticle Research, 9, 85-92, 2007.
- Evans, D. E., Ku, B. K., Birch, M. E. and Dunn, K. H. : Aerosol monitoring during carbon nanofiber production: Mobile direct-reading sampling. The Annals of Occupational Hygiene, 54(4), 514-531, 2010. https://doi.org/10.1093/annhyg/meq015
- Bello, D., Wardle, B. L., Yamamoto, N., deVilloria, R. G., Garcia, E. J., Hart, A. J., Ahn, K., Ellenbecker, M. J. and Hallock, M. : Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes. Journal of Nanoparticle Research, 11, 231-249, 2009. https://doi.org/10.1007/s11051-008-9499-4
- Heitbrink, W. A., Evans, D. E., Ku, B. K., Maynard, A. D., Slavin, T. and Peters, T. : Relationship among particle number, surface area, and respirable mass concentration in an automotive engine manufacturing. Journal of Occupational and Environmental Hygiene, 6, 19-31, 2009.
- Evans, D. E., Heitbrink, W. A., Slavin, T. J. and Peters, T. M. : Ultrafine and respirable particles in an automotive grey iron foundry. The Annals of Occupational Hygiene, 52, 9-21, 2008.
- Han, J. H., Lee, E. J., Lee, J. H., So, K. P., Lee, Y. H., Bae, G. N., Lee, S. B., Ji, J. H., Cho, M. H. and Yu, I. J. : Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility. Inhalation Toxicology, 20, 741-749, 2008. https://doi.org/10.1080/08958370801942238
- Maynard, A. D. and Aitken, R. J. : Assessing exposure to airborne nanomaterials: Current abilities and future requirements. Nanotoxicology, 1(1), 26-41, 2007. https://doi.org/10.1080/17435390701314720
- Methner, M. M., Birch, M. E., Evans, D. E. and Hoover, M. D. : NIOSH Health Hazard Evaluation Report. HETA #2005-0291-3025. University of Dayton Research Institute (UDRI), Dayton Ohio, October, 2006. http://www.cdc.gov/niosh/hhe/reports/pdfs/2005-0291-3025.pdf
- Mazzuckelli, L. F. (Ed.), Methner, M. M., Birch, M. E., Evans, D. E., Ku, B. K., Crouch, K. G. and Hoover, M. D. : Case study: Identification and characterization of potential sources of worker exposure to carbon nanofibers during polymer composite laboratory operations. Journal of Occupational and Environmental Hygiene, 4(12), D125-D130, 2007. https://doi.org/10.1080/15459620701683871
- Maynard, A. D., Aitken, R. J., Butz, T., Colvin, V., Donaldson, K., Oberdorster, G., Philbert, M. A., Ryan, J., Seaton, A., Stone, V., Tinkle, S. S., Tran, L., Walker, N. J. and Warheit, D. B. : Safe handling of nanotechnology. Nature, 444, 267-269, 2006. https://doi.org/10.1038/444267a
- U.S. Environmental Protection Agency. Nanomaterial research strategy. Washington, D.C: Office of Research and Development, U.S. Environmental Protection Agency. EPA 620/K-09/011, 2009.
- Hirst, N., Brocklebank, M. and Ryder, M. : Containment systems: a design guide. Warwickshire, UK: Institution of Chemical Engineers (IChemE), 2002.
- ACGIH : Industrial ventilation: a manual of recommended practice. 26th edn. Cincinnati, OH. ACGIH Signature Publications, 2007.
- Old, L. and Methner, M. M. : Engineering case report: effectiveness of local exhaust ventilation (LEV) in controlling engineered nanomaterial emissions during reactor cleanout operations. Journal of Occupational and Environmental Hygiene, 5, D63-D69, 2008. https://doi.org/10.1080/15459620802059393
- Ku, B. K., Maynard, A. D., Baron, P. A. and Deye, G. J. : Observation and measurement of anomalous responses in a differential mobility analyzer caused by ultrafine fibrous carbon aerosols. Journal of Electrostatics, 65(8), 542-548, 2007. https://doi.org/10.1016/j.elstat.2006.10.012