참고문헌
- Urist MR. Bone formation by autoinduction. Science 1965;150: 893-9. https://doi.org/10.1126/science.150.3698.893
- Mizutani H, Urist MR. The nature of bone morphogenetic protein (BMP) fractions derived from bovine bone matrix gelatin. Clin Orthop Relat Res 1981;171:213-23.
- Sato K, Urist MR. Bone morphogenetic protein-induced cartilage development in tissue culture. Clin Orthop Relat Res 1984;183:180-7.
- Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, et al. Novel regulators of bone formation: Molecular clones and activities. Science 1988;242:1528-34. https://doi.org/10.1126/science.3201241
- Sampath TK, Reddi AH. Homolgy of bone-inductive proteins from human, monkey, bovine, and rat extracellular matrix. Proc Natl Acad Sci USA 1983;50:6591-95.
- Chai Y, Slavkin HC. Biology of bone induction and its clinical applications. Oral Maxillofac Surg Clin North Am 1994;7:739-53.
- Wozney JM. Biology and clinical applications of rhBMP-2. In: Lynch SE, Genco RJ, Marx RE, eds. Tissue engineering: applications in maxillofacial surgery and periodontics. Chicago: Quintessence; 1999:103-10.
- Komaki M, Katagiri T, Suda T. Bone morphogenetic protein-2 does not alter differentiation pathway of committed progenitors of osteoblasts and chondroblasts. Cell Tissue Res 1996;284:9-17. https://doi.org/10.1007/s004410050562
- Nam JH, Park JC, Yu SB, Chung YI, Tae GY, Kim JJ, et al. Bone regeneration with MMP sensitive hyaluronic acid-based hydrogel, rhBMP-2 and nanoparticles in rat calvarial critical size defect (CSD) model. J Korean Assoc Oral Maxillofac Surg 2009;35:137-45.
- Geiger M, Li RH, Friess W. Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev 2003;55:1613-29. https://doi.org/10.1016/j.addr.2003.08.010
- Lee JH, Kim SM, Park JC, Sung MA, Yu SB, Nam JH, et al. Bone regeneration with hyaluronic acid based hydrogel-nanoparticle complex and rhBMP-2 in rat critical size defect model. Tissue Eng Regen Med 2009;6:730-8.
- Sakiyama-Elbert SE, Hubbell JA. Development of fibrin derivatives for controlled release of heparin-binding growth factors. J Control Release 2000;65:389-402. https://doi.org/10.1016/S0168-3659(99)00221-7
- Kim HD, Valentini RF. Retention and activity of BMP-2 in hyaluronic acid-based scaffolds in vitro. J Biomed Mater Res 2002;59:573-84. https://doi.org/10.1002/jbm.10011
- Chung YI, Ahn KM, Jeon SH, Lee SY, Lee JH, Tae G. Enhanced bone regeneration with BMP-2 loaded functional nanoparticlehydrogel complex. J Control Release 2007;121:91-9. https://doi.org/10.1016/j.jconrel.2007.05.029
- Saito N, Okada T, Horiuchi H, Ota H, Takahashi J, Murakami N, et al. Local bone formation by injection of recombinant human bone morphogenetic protein-2 contained in polymer carriers. Bone 2003;32:381-6. https://doi.org/10.1016/S8756-3282(03)00028-0
- Boyan BD, Lohmann CH, Somers A, Niederauer GG, Wozney JM, Dean DD, et al. Potential of porous poly-D,L-lactide-co-glycolide particles as a carrier for recombinant human bone morphogenetic protein-2 during osteoinduction in vivo. J Biomed Mater Res 1999;46:51-9. https://doi.org/10.1002/(SICI)1097-4636(199907)46:1<51::AID-JBM6>3.0.CO;2-I
- Sung HJ, Meredith C, Johnson C, Galis ZS. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials 2004;25:5735-42. https://doi.org/10.1016/j.biomaterials.2004.01.066
- Dal Pra I, Freddi G, Minic J, Chiarini A, Armato U. De novo engineering of reticular connective tissue in vivo by silk fibroin nonwoven materials. Biomaterials 2005;26:1987-99. https://doi.org/10.1016/j.biomaterials.2004.06.036
- Horan RL, Antle K, Collette AL, Wang Y, Huang J, Moreau JE, et al. In vitro degradation of silk fibroin. Biomaterials 2005;26:3385-93. https://doi.org/10.1016/j.biomaterials.2004.09.020
- Gosline JM, DeMont ME, Denny MW. The structure and properties of spider silk. Endeavour 1986;10:37-43. https://doi.org/10.1016/0160-9327(86)90049-9
- Furuzono T, Ueki M, Kitamura H, Oka K, Imai E. Histological reaction of sintered nanohydroxyapatite-coated cuff and its fibroblast- like cell hybrid for an indwelling catheter. J Biomed Mater Res Part B Appl Biomater 2009;89:77-85.
- Wang Y, Blasioli DJ, Kim HJ, Kim HS, Kaplan DL. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Biomaterials 2006;27:4434-42. https://doi.org/10.1016/j.biomaterials.2006.03.050
- Kirker-Head C, Karageorgiou V, Hofmann S, Fajardo R, Betz O, Merkle HP, et al. BMP-silk composite matrices heal critically sized femoral defects. Bone 2007;41:247-55. https://doi.org/10.1016/j.bone.2007.04.186
- Karageourgiou V, Tomkins M, Fajardo R, Meinel L, Snyder B, Wade K, et al. Porous silk fibroin 3-D scaffolds for delivery of bone morphogenetic protein-2 in vitro and in vivo. J Biomed Mater Res A 2006;78:324-34.
- Meinel L, Fajardo R, Hofmann S, Langer R, Chen J, Snyder B, et al. Silk implants for the healing of critical size bone defects. Bone 2005;37:688-98. https://doi.org/10.1016/j.bone.2005.06.010
- Jang ES, Park JW, Kweon H, Lee KG, Kang SW, Baek DH, et al. Restoration of peri-implant defects in immediate implant installations by Choukroun platelet-rich-fibroin and silk fibroin powder combination graft. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109:831-6. https://doi.org/10.1016/j.tripleo.2009.10.038
- Lee EH, Kim JY, Kweon HY, Jo YY, Min SK, Park YW, et al. A combination graft of low-molecular-weight silk fibroin with Choukroun platelet-rich fibrin for rabbit calvarial defect, Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109:e33-8.
- Kim JY, Choi JY, Jeong JH, Jang ES, Kim AS, Kim SG, et al. Low molecular weight silk fibroin increases alkaline phosphatase and type I collagen expression in MG63 cells. BMB Rep 2010;43:52-6. https://doi.org/10.5483/BMBRep.2010.43.1.052
- Minoura N, Tsukada M, Nagura M. Fine structure and oxygen permeability of silk fibroin membrane treated with methanol. Polymer 1990;31:265-9. https://doi.org/10.1016/0032-3861(90)90117-H
- Santin M, Motta A, Freddi G, Cannas M. In vitro evaluation of the inflammatory potential of the silk fibroin. J Biomed Mater Res 1999;46:382-9. https://doi.org/10.1002/(SICI)1097-4636(19990905)46:3<382::AID-JBM11>3.0.CO;2-R
- Cao Y, Wang B. Biodegradation of silk biomaterials. Int J Mol Sci 2009;10:1514-24. https://doi.org/10.3390/ijms10041514
- Zhao J, Zhang Z, Wang S, Sun X, Zhang X, Chen J, et al. Apatite-coated silk fibroin scaffolds to healing mandibular border defects in canines. Bone 2009;45:517-27. https://doi.org/10.1016/j.bone.2009.05.026
- Kino R, Ikoma T, Yunoki S, Nagai N, Tanaka J, Asakura T, et al. Preparation and characterization of multilayered hydroxyapatite/silk fibroin film. J Biosci Bioeng 2007;103:514- 20. https://doi.org/10.1263/jbb.103.514
- Zhao Y, Chen J, Chou AH, Li G, LeGeros RZ. Nonwoven silk fibroin net/nano-hydroxyapatite scaffold: preparation and characteristics. J Biomed Mater Res A 2010;91:1140-9.
피인용 문헌
- Bone regeneration by bone morphogenetic protein-2 from porous beads with leaf-stacked structure for critical-sized femur defect model in dogs vol.34, pp.10, 2020, https://doi.org/10.1177/0885328220910033