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Abstract: We consider three different secure broadcasting scenari-
os: i) Broadcast channels with common and confidential messages
(BCCQ), ii) multi-receiver wiretap channels with public and confi-
dential messages, and iii) compound wiretap channels. The BCC is
a broadcast channel with two users, where in addition to the com-
mon message sent to both users, a private message, which needs
to be kept hidden as much as possible from the other user, is sent
to each user. In this model, each user treats the other user as an
eavesdropper. The multi-receiver wiretap channel is a broadcast
channel with two legitimate users and an external eavesdropper,
where the transmitter sends a pair of public and confidential mes-
sages to each legitimate user. Although there is no secrecy concern
about the public messages, the confidential messages need to be
kept perfectly secret from the eavesdropper. The compound wire-
tap channel is a compound broadcast channel with a group of le-
gitimate users and a group of eavesdroppers. In this model, the
transmitter sends a common confidential message to the legitimate
users, and this confidential message needs to be kept perfectly se-
cret from all eavesdroppers. In this paper, we provide a survey of
the existing information-theoretic results for these three forms of
secure broadcasting problems, with a closer look at the Gaussian
multiple-input multiple-output (MIMO) channel models. We also
present the existing results for the more general discrete memory-
less channel models, as they are often the first step in obtaining
the capacity results for the corresponding Gaussian MIMO chan-
nel models.

Index Terms: Broadcast channels, information theoretic security,
multiple antennas.

I. INTRODUCTION

Information theoretic secrecy was initiated by Wyner in his
landmark paper [1], where he introduced the wiretap channel
which consists of a transmitter, a legitimate user and an eaves-
dropper. In the wiretap channel, the transmitter sends a message
to the legitimate user, where this message needs to be kept hid-
den as much as possible from the eavesdropper. Wyner considers
the degraded wiretap channel, where the eavesdropper’s obser-
vation is degraded with respect to the legitimate user, and ob-
tains the capacity-equivocation region of the degraded wiretap
channel. Wyner’s result is generalized by Csiszar-Korner [2] in
two ways: i) Csiszar-Korner considers a general, not necessarily
degraded, wiretap channel and ii) in their set-up, there is also a
common message sent to both the legitimate user and the eaves-
dropper, in addition to the legitimate user’s private message that
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needs to be kept hidden as much as possible from the eavesdrop-
per. For this rather general scenario, Csiszar-Korner establishes
the capacity-equivocation region.

Recently, information-theoretic secrecy has gathered a renew-
ed interest, and the basic wiretap channel [1], [2] has been ex-
tended to various multi-user communication scenarios. The mo-
tivation of these works comes from wireless communications,
where the inherent openness of the wireless medium lets each
user have an overheard information on all ongoing communica-
tion sessions. This overheard information is the basis for both
cooperation and loss of confidentiality. There have been many
extensions of the basic wiretap channel to multi-user channels,
such as multiple-access channels with confidential messages, in-
terference channels with confidential messages, relay channels
with confidential messages, etc. A tutorial on all these models
can be found in [3]. Here, we focus on one of these multi-user
scenarios: Secure broadcasting, and provide an in depth tutorial
on its development, as well as the current state-of-the-art in this
field.

In the secure broadcasting problem, generally speaking, there
is a transmitter that broadcasts confidential information to many
users while this communication is being eavesdropped. In this
paper, we consider three different secure broadcasting problems.
In other words, we consider three different channel models that
capture different aspects of the secure broadcasting problem:
i) Broadcast channel with common and confidential messages
(BCC)!, ii) multi-receiver wiretap channels, and iii) compound
wiretap channels.

The BCC is a two-user broadcast channel where each user
treats the other user as an eavesdropper. For this channel model,
we consider the most general communication scenario where
the transmitter sends a common message to both users as well
as a private message to each user. In this scenario, the aim of
the transmitter is to send the private message of each user while
keeping the other user as ignorant of this message as possible.
This scenario can be viewed as a symmetrized version of the
wiretap channel [1], [2], where only one of the two users was
modeled to receive a private message with a secrecy concern on
it. We note that this scenario can be used to model the commu-
nication from a base station to the end-users in a cellular sys-
tem, where each end-user treats the other end-users as potential
eavesdroppers.

The multi-receiver wiretap channel is a broadcast channel
with two legitimate users, and an external eavesdropper. For this
channel model, we consider the most general communication
scenario studied in the literature so far, where the transmitter
sends a pair of public and confidential messages to each legiti-

1A survey for the BCC is also provided in [4]. After the publication of [4],
many other results have appeared for the BCC, which are provided in this paper.

1229-2370/10/$10.00 © 2010 KICS



412

mate user. In this scenario, although there is no secrecy concern
on the public messages, the confidential messages need to be
kept perfectly secret from the eavesdropper. This scenario can
be viewed as a generalization of the basic wiretap channel [1],
[2] to a broadcast channel with multiple legitimate users. We
also note that, similar to the previous channel model, this chan-
nel model can also be used to model the communication from a
base station to the end-users in a cellular system, where now this
communication needs to be kept secure from an external eaves-
dropper in the communication range.

The compound wiretap channel can be defined in two equiv-
alent ways. In the first, classical, definition, there is a basic
wiretap channel [1}, [2] where the channel has a finite number
of states determining the transition probability of the channel,
and the transmitter does not know the realization of the channel
state. The goal of the transmitter is to send a message to the le-
gitimate user while keeping the eavesdropper totally ignorant of
the message, irrespective of the channel state realization. Since
each channel state yields a different wiretap channel, the com-
pound wiretap channel can be viewed as a collection of many
wiretap channels such that there is a group of legitimate users
and a group of eavesdroppers in the channel, and the transmit-
ter sends a common confidential message to all legitimate users
while keeping all eavesdroppers ignorant of this message [5].
This interpretation corresponds to the second definition of the
compound wiretap channel, and is the reason why we consider
the compound wiretap channel as a form of secure broadcast-
ing. This second definition reveals that the compound wiretap
channel can be viewed as a generalization of the basic wiretap
channel to the wiretap channel with many legitimate users and
many eavesdroppers. We note that compound wiretap channel
can be used to model the broadcast of a television station to the
subscribed users aiming to keep the unsubscribed users ignorant
of the content.

In this paper, we mainly consider the Gaussian multi-input

multi-output (MIMO) models for these three scenarios. In each
scenario, we start our discussion with the corresponding discrete
memoryless channel model as it generally serves as an interme-
diate step in obtaining the result for the Gaussian MIMO chan-
nel model. In this paper, we give a special emphasis to the Gaus-
sian MIMO channel model because of the enhanced secrecy that
can be obtained by the usé of muiltiple antennas. To provide an
example to the fact that secrecy can be enhanced by the use of
multiple antennas, let us consider the Gaussian broadcast chan-
nel with two users where each user treats the other one as an
eavesdropper, i.e., as in the first secure broadcasting scenario
discussed above. It is well-known that in this single-antenna
system, both users cannot have secrecy simultaneously [6]. On
the other hand, if the transmitter and the receivers are equipped
with multiple antennas, both users can enjoy simultaneous se-
cure communication [7]. Similar examples can be provided for
the Gaussian multi-receiver wiretap channel [8], [9], and Gaus-
sian compound wiretap channel [5].

II. CHANNEL MODELS

In this paper, we review the state-of-art for three secure broad-
casting scenarios. In this section, we introduce the correspond-
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ing Gaussian MIMO channel models for these three problems.
Since achievable schemes, outer bounds and capacity results for
discrete memoryless channel models serve as intermediate steps
to obtain achievable schemes, outer bounds and capacity results
for Gaussian MIMO channel models, here we also introduce
the corresponding discrete memoryless channel models for these
three problems.

A. Broadcast Channels with Common and Confidential Mes-
sages

The BCC consists of a transmitter with an input X € X, and
two receivers with observations Y1 € Y; and Y2 € ). The
channel is memoryless with a transition probability p(y1, y2|z).
The transmitter sends a common message to both users, and
a private message to each user. In this channel, each user (re-
ceiver) treats the other one as an eavesdropper, and hence, wants
its private message to be kept hidden as much as possible from
the other user.

An (n,2nFo 2nF:i 9nRz) code for this channel consists
of three message sets Wy, = {1,---, 2B} W, =
{1,--,2"4}, and Wy = {1,---,2"%2}, an encoder at the
transmitter f” : Wy x Wy X Wy — X", and two decoders
g}l : y;.l — Wo x W;, one at each receiver. The probabil-
ity of error is defined as P} = max{Pjj, F%}, where P} =
Prlg}(Y]") # (Wo, W;)), and Wy, Wy, and W are uniformly
distributed random variables in Wy, Wy, and W, respectively. -
The secrecy of each user’s private message is measured by its
equivocation at the other user?

H(WA{Wo, W, YY) and ~H(WalWo, W1, ¥7). (1)
A rate tuple (R, Ri, Ry, Re1, Rea) is said to be achievable

if there exists an (n,27f0 2nf1 9nR2) code which satisfies
limy 0 P = 0 and

1
R < lgn EH(W1|W0’W2’ Yv2n)9 @
Reg < lim }'H(WZIWG)WI) }qn) (3)
n—oon

The capacity-equivocation region of the BCC is defined as the
closure of all achievable rate tuples (Rg, Ry, Ra, Re1, Rea). The
capacity-equivocation region of the BCC is a five-dimensional
region which contains many sub-regions. From a secrecy point
of view, one important sub-region that the capacity-equivocation
region of the BCC contains is the secrecy capacity region
which contains all rate tuples of the form (R, Ry, Ro, Re1 =
R1, Res = Rp) in the capacity-equivocation region of the BCC.
Hence, the secrecy capacity region is a three dimensional re-
gion that contains rate triples (Ry, Ry, Rg) for which the pri-
vate messages are transmitted in perfect secrecy, i.e., Rey =
R; and R.> = Ry>. Moreover, we note that in view of (2)-(3),

2Equivalently, equivocation can be defined as
1 T 1 T
;H(Wl [Y7") and ;L'H(W25Y1 )
since the first user decodes Wy, W1, and the second user decodes Wy, Wa.

3Whenever a private message is transmitted in perfect secrecy, ie., Re; =
R;, we call the private message confidential message.
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the perfect secrecy requirement B,y = R; and Res = Ry can
be expressed as

1
lim —I(Wy; Wy, Wa, Y5") =0,

ir )
n—o0 N

1
lim = I(Wa; Wo, Wy, Y7) = 0. ()
n—>o0 N

Another important point in the capacity-equivocation region of
the BCC is the secrecy capacity of each user which is the maxi-
mum private message rate of a user such that the private message
can be transmitted in perfect secrecy.

Now, we introduce a class of broadcast channels which satisfy
the following Markov chain

X—-Y Y. ©6)

A broadcast channel satisfying the Markov chain in (6) is called
a degraded broadcast channel.

Next, we introduce the Gaussian MIMO BCC which is de-
fined by

Y, = H1X+N1,
Y, =H;X + N

)
®)

where the ¢ x 1 vector X denotes the channel input, the r; x t
matrix H; is the channel gain matrix of the jth user, and N;
is the Gaussian noise with zero-mean and identity covariance
matrix at the jth user’s receiver. The channel input is subject to
the following covariance constraint

E[XX'] =S 9)

where 8 is a strictly positive definite matrix.

B. Multi-Receiver Wiretap Channels

The multi-receiver wiretap is a broadcast channel with X +1
receivers where there are K legitimate users receiving confi-
dential messages, and an eavesdropper which is listening to
the communication between the transmitter and the legitimate
users. For the sake of simplicity, we set K = 2 here*. Thus,
the multi-receiver channel under consideration consists of one
transmitter with input alphabet X, two legitimate users with
output alphabets }; and )», and an eavesdropper with output
alphabet Z. The channel is memoryless with a transition prob-
ability p(y1, y2, z|z), where X € X is the channel input, and
Y1 € Y1,Ys € Js, and Z € Z denote the channel output of the
first legitimate user, the second legitimate user, and the eaves-
dropper, respectively.

We consider the scenario in which, the transmitter sends a pair
of public and confidential messages to each legitimate user’.
While there are no secrecy constraints on the public messages,

4When necessary, we will give references to papers where K > 2 was con-
sidered.

5We note that this scenario is not the most general one that can be studied
for the multi-receiver wiretap channel. For example, in addition to the public
and confidential messages involved in this scenario, there might be a common
message sent to both the eavesdropper and the legitimate users. Inclusion of this
common message would yield a more general scenario than the one considered
here. However, the scenario considered here is the most general scenario studied
so far.
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we require the confidential messages to be transmitted in perfect
secrecy. We call the channel model arising from this scenario
the multi-receiver wiretap channel with public and confidential
messages.

An (n,27Ee onBa onfp: gnRa) code for this channel
consists of four message sets Wy = {1,---,2"Fe1} Wy, =
{1»"'a2nR51}’Wp2 = {1,_”’2an2}, and Wy =
{1,---,2"%2} one encoder at the transmitter f" : Wy X
Wsi X Wy x Wse — &A™, and one decoder at each legiti-
mate user g} : Y — Wp; x W;. The probability of error is
defined as P! = max{P, Pjy}, where P = Prlg?(Y]") #
(W, W;)] and Wpy, Wi, Wy, and Wi, are uniformly dis-
tributed random variables in Wy, W1, Wpa, and W, respec-
tively. A rate tuple (Rpl? R, Rpo, R,2) is said to be achievable
if there exists an (n,2"fet 27Rs1 2nRp2 9nRe) code which
satisfies limy,_, 00 P2 = 0 and

1
lim —I(Wgy, Wea; Z™) = 0.

n—+oG 11

(10)

We note that the perfect secrecy requirement in (10) implies the
following two conditions

1
Hm lI{FVsl;Z”) =0 and lim —[{(Ws; Z") =0.
n—oo N n—oo N
(1)

The capacity region of the multi-receiver wiretap channel with
public and confidential messages is defined as the convex clo-
sure of all achievable rate tuples (Rp1, Re1, Rp2, Rs2). From
a secrecy point of view, one important sub-region that the ca-
pacity region of the multi-receiver wiretap channel includes is
the secrecy capacity region which contains all rate tuples of the
form (Rp1 = 0, Rs1, Rp2 = 0, Rs2) in the capacity region of
the multi-receiver wiretap channel. Thus, the secrecy capacity
region of the multi-receiver wiretap channel corresponds to the
scenario where there are only two confidential messages, one for
each legitimate user, i.e., there are no public messages, and these
confidential messages need to be kept perfectly secret from the
eavesdropper.

Now, we introduce a class of multi-receiver wiretap channels
which satisfy the following Markov chain

XY Y —Z 12

A multi-receiver wiretap channel satisfying the Markov chain in
(12) is called a degraded multi-receiver wiretap channel.

Next, we introduce the Gaussian MIMO multi-receiver wire-
tap channel which is defined by

Y; =H; X+ Ny, (13
Yg = HQX + N2, (14)
Z=H;X+Ny (15)

where the ¢ x 1 vector X denotes the channel input, the r; x ¢
matrix H; is the channel gain matrix of the jth user, the ry x ¢
matrix Hz is the channel gain matrix of the eavesdropper, and
{N;}35_, and Nz are the Gaussian noise vectors with zero-
mean and identity covariance matrices at the legitimate users’
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and the eavesdropper’s receivers, respectively. The channel in-
put is subject to the following covariance constraint

E[XXT] <S8 (16)
where S is a strictly positive definite matrix.

Finally, we conclude this section by the definition of the de-
graded Gaussian MIMO multi-receiver wiretap channel. In view
of the definition of the degraded discrete memoryless multi-
receiver wiretap channel and the Markov chain in (12), a Gaus-
sian MIMO multi-receiver wiretap channel is said to be de-
graded if it satisfies the following Markov chain

X—-Y; =Yy~ Z an
Equivalently, the degradedness of a Gaussian MIMO multi-
receiver wiretap channel can be defined as follows: A Gaussian
MIMO multi-receiver wiretap channel is degraded if there exist
two matrices D12 and D3z which satisfy the following condi-
tions.

1) H2 = D12H1 and HZ = D22H2.

ii) D12D1'—2 <1 and DgZDzTZ <L

C. Compound Wiretap Channels

The compound wiretap channel consists of a legitimate user
and an eavesdropper. In compound wiretap channels, there are
a finite number of channel states determining the channel tran-
sition probability. The channel takes a certain fixed state for the
entire duration of the transmission, and the transmitter does not
have any knowledge about the channel state realization, whereas
both the legitimate user and the eavesdropper know the realiza-
tion of the channel state. Thus, the aim of the transmitter is to
ensure both the reliability and the secrecy of messages irrespec-
tive of the channel state realization. In addition to this defini-
tion, the compound wiretap channel admits another interpreta-
tion. Consider the multi-receiver wiretap channel with several
legitimate users and many eavesdroppers, where the transmit-
ter wants to transmit a common confidential message to legiti-
mate users while keeping all of the eavesdroppers totally igno-
rant of the message. Since each eavesdropper and legitimate user
pair can be regarded as a different channel state realization, this
channel is equivalent to a compound wiretap channel. Therefore,
one can interpret a compound wiretap channel as multicasting a
common confidential message to several legitimate receivers in
the presence of one or more eavesdroppers [5]. Due to this in-
terpretation, we treat the compound wiretap channel as a form
of secure broadcasting.

The discrete memoryless compound wiretap channel consists
of a transmitter with input alphabet X', Ky legitimate users with
output alphabets );, and Kz eavesdroppers with output alpha-
bets Zy. The channel is memoryless with a transition probability
p(Y1, - Yky, 21, - 2K, |2) Where € X is the channel in-
put, y;; € Y; is the jth legitimate user’s output, and 2z, € Z
is the kth eavesdropper’s channel output. We consider the sce-
nario where the transmitter sends a common confidential mes-
sage to Ky legitimate users, and this common confidential mes-
sage needs to be kept perfectly secret from Kz eavesdroppers.

An (n,2"%) code for the compound wiretap channel con-
sists of a message set W = {1,---,2"F}, an encoder at the

transmitter f* : W — X", and one decoder at each legiti-
mate user g;' : YV;' — W. The probability of error is defined
as Pl = max;—i ... ky PJ5, where P, = Pr [q7(Y]") # W],
and W is a uniformly distributed random variable in W. A se-
crecy rate R is said to be achievable if there exists an (n, 2"%)
code which satisfies lim,, o, P, = 0 and

lim (18)
n—o0

%I(W; 2 =0, k=1,--- Kz

The maximum of all achievable secrecy rates for a compound
wiretap channel is called the secrecy capacity.

Now, we define a class of compound wiretap channels called
the degraded compound wiretap channel which satisfies the fol-
lowing Markov chain

XY, =7y (19)

for any (j, k) pair. :
Next, we introduce the Gaussian MIMO compound wiretap
channel which is defined by
Y; =HYX+N7,
Zp = H{X + N7

(20
21

where the £ X 1 vector X denotes the channel input, the r}/ Xt
matrix H}' is the channel gain matrix of the jth legitimate user,
the rZ x t matrix HZ is the channel gain matrix of the kth eaves-
dropper, and NY and N7 are the Gaussian noise vectors with
zero-mean and identity covariance matrices at the jth legitimate
user’s and the kth eavesdropper’s receivers, respectively. The
channel input is subject to the following covariance constraint

E[XXT] <8 (22)
where S is a strictly positive definite matrix.

Now, we define the degraded Gaussian MIMO compound
wiretap channel. In view of the definition of the degraded dis-
crete memoryless compound wiretap channel and the Markov
chain in (19), a Gaussian MIMO compound wiretap channel is
said to be degraded if it satisfies the following Markov chain

X—=Y; = Zy (23)
for any (7, k) pair. Equivalently, the degradedness of a Gaussian
MIMO compound wiretap channel can be defined as follows: A
Gaussian MIMO compound wiretap channel is degraded if, for
any (j, k) pair, there exists a matrix Dy, satisfying D, H} =
HY and DjzDJ, < L.

D. Comments on Gaussian MIMO Channels

‘We provide some comments about the way we define Gaus-
sian MIMO channel models. The first one is about the fact that
we use the covariance constraint F [XXT] =< S instead of the
more common total power constraint tr (E [XXT]) < P. We

note that the covariance constraint is more general and it sub-

sumes the total power constraint as a special case [10]. In par-'
ticular, any result for the covariance constraint can be used to
obtain the corresponding result for the total power constraint.
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For example, if we denote a capacity region that arises from the
use of a covariance constraint by C(S), the capacity region aris-
ing from the use of a total power constraint C***~P°%( P) can be
obtained as [10]

Ctot—pow (P) -

U <. (24)

S:tr(S)<P

If C(S) is the capacity arising from the use of a covariance con-
straint, the capacity arising from the use of a total power con-
straint is given by

Ctot—pow(P) — max
S:tr(S)<P

C(8S). (25)
The conversion of any inner or outer bound obtained for a co-
variance constraint to the corresponding inner and outer bound
for a total power constraint can be accomplished by using rela-
tions similar to the ones given in (24) and (25).

The second comment is about our assumption that S is strictly
positive definite. This assumption does not lead to any loss of
generality because for any Gaussian MIMO channel model with
a positive semi-definite covariance constraint, i.e., S > 0 and
|S| = 0, we can always construct an equivalent channel with
the constraint F£ [XX ] < S’ where S’ > 0 (see Lemma 2 of

[10]).

III. BROADCAST CHANNELS WITH COMMON AND
CONFIDENTIAL MESSAGES

First, we review the results for the capacity-equivocation re-
gion of the discrete memoryless BCC, and next present the
results for the Gaussian MIMO BCC. We start with the best
known inner bound for the capacity-equivocation region of the
BCC, i.e., the largest achievable region. This achievable region
is given by the following theorem.

Theorem 1 ([11], [12]) Rate tuples (Rq, R1, Ra, Re1, Re2)
satisfying

Ro + Ry < min{I(U; V1), I(U; Ya)} + I(Vi; Y1 U),
27

Ro + Ry < min{I(U; Y1), I(U; Ya)} + I(Va; Ya|U),
(28)

Ro + Ry + Ry < min{I(U; Y1), I(U; Ya)} + I(Vi; Y1 |U)

+1(Va; Yo|U) — I(Va; V|U), 29)
Rey < [I(VisYi|U) — I(V1; Yo, o[U)] T, (30)
Rea < I(Va; Yo|U) — I(Va; Y1, VAIU)]T, (3D
Re1 < Ry, (32)
Reo < Ry (33)

for some (U, V1, V2) — X — (Y;,Y3) are achievable.

This achievable rate region can viewed as a generalization of
Marton’s inner bound [13] for broadcast channels to the secrecy
context. Similar to Marton’s inner bound for broadcast channels,
in Theorem 1, U denotes the common message intended to both
receivers as well as the parts of the private messages through
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rate-splitting, i.e., each private message can be divided into two
parts, and one of these two parts can be sent together with the
common message by using U. Since U denotes the information
that is decoded by both users, the parts of the private messages
carried by U cannot have any confidentiality. In Theorem 1, V;
and V; represent the private messages, or parts of the private
messages if rate-splitting is used, of the first and second user,
respectively. Besides rate-splitting, this achievable scheme uses
superposition coding and random binning. U and (V7, V2) cor-
respond to the two layers of the superposition coding. To en-
code the private messages into V; and Vs, random binning is
used. The difference of the achievable scheme in Theorem 1
from Marton’s inner bound comes from the equivocation com-
putation which necessitates one more random binning on top
of the already present random binning in Marton’s achievable
scheme. Thus, the achievable scheme in Theorem 1 uses dou-
ble binning. In Marton’s achievable scheme, random binning is
used to ensure the joint typicality of the codewords generated
through V; and V,. On the other hand, the additional binning
used for the achievable scheme in Theorem 1 provides the nec-
essary randomness and protection to achieve equivocation.

In general, it is unknown whether the achievable rate region
in Theorem 1 is equal to the capacity-equivocation region of the
BCC. However, the partial tightness of this achievable region
has been shown, i.e., if certain rates are set to zero, this inner
bound matches the capacity-equivocation region of the BCC.
Since our main emphasis is on secrecy in this paper, we review
only the relevant secrecy literature. In the secrecy context, the
partial tightness of the region in Theorem 1 has been shown
by Wyner for the first time [1]. Wyner studied the degraded
broadcast channel for the scenario where there is no common
message, and no private message for the second user. Hence,
the second user acts as a pure eavesdropper, i.e., no informa-
tion is sent to the second user. Thus, in this scenario, there is
only one private message sent to the first user and this message
needs to be kept hidden as much as possible from the second
user (eavesdropper), i.e., the scenario studied by Wyner can be
obtained from the general scenario introduced for the BCC in
subsection II-A by setting Ry = Ry = Re2 = 0. The capacity-
equivocation region for this scenario is given by the following
theorem.

Theorem 2 ([1]) The capacity-equivocation region of the de-

graded broadcast channel with only one private message is given
by the union of rate pairs (Ry, Re1) satisfying

Ry < I(X; Y1), (34)
Ry <I(X;Y) — I(X;Y3), (35)
R £ Ry (36)

where X — Y7 — Ya.

We note that the capacity-equivocation region in Theorem 2
can be obtained by setting U = Vo = ¢ and V; = X in the
achievable region in Theorem 1, hence the achievable region in
Theorem 1 is tight for this case. From Theorem 2, by setting
R.1 = Ry, we can obtain the secrecy capacity of a degraded
wiretap channel as follows.

Corollary 1 ([1]) The secrecy capacity of a degraded wiretap
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channel is given by

max I{X;1) - I{X;Ys) &)
where X = V; — Ya.

Wyner’s result is generalized by Csiszar-Korner [2] in two
ways: i) They consider a general, i.e., nof necessarily degraded,
broadcast channel and ii) their scenario includes a common
message intended to both the first user and the second user
(eavesdropper) in addition to the private message for the first
user. Thus, their scenario can be obtained from the general
scenario introduced for the BCC in subsection II-A by setting
Ry = Rey = 0. The capacity-equivocation region for this sce-
nario is given by the following theorem.

Theorem 3 ([2]) The capacity-equivocation region of the
broadcast channel with common and only one private message
is given by the union of rate tuples (Rg, R1, R.1) satisfying

Ro < min{I(U; Y1), I(U; Y2)}, (38)
Ro+ R < min{I(U; Yl)»I(U;Y2)} +I(V;Yl|U)3 (39
R < [I(Vini|U) = I(V; Y [U)] (40)
R < Ry 41)

where U -V - X - Y; - Y.

We note that the capacity-equivocation region in Theorem 3
can be obtained from the achievable region in Theorem 1 by
setting V2 = ¢ and V) = V. Hence, the achievable scheme in
Theorem 1 is tight for this scenario as well.

Since the proof of Theorem 3 provides many new tools
which proved to be very useful for many subsequent secrecy
problems, now we provide some more detail about the proof
of Theorem 3. The achievability proof of the capacity result
in Theorem 3 brought the concept of channel pre-fixing. In
particular, in the achievability proof of Theorem 3, [2] first
shows the achievability of the region that consists of rate triples
(Ro, R1, Re1) satisfying

Ry £ min{I(U§Yl)7I(U§Y2)}7 42)
Ro + By < min{I(U; Y1), I(U; Ya)} + I(X5 Y1|U),  (43)
Re1 < [I(X;%|U) - I(X; Ya|U)] “4)
Ry <Ry (45)

where U — X — Y3,Ys. Next, they consider a new chan-
nel, i.e., stochastic mapping, with transition probability p(z|v)
which is used to pre-fix the original channel p(y1, y2|x) yielding
a new equivalent channel p(y;, y2|v). We note that any coding
scheme for the new equivalent channel can be transformed into a
coding scheme for the original channel because the encoder for
the new channel f/ can be transformed into the encoder f for the
original channel by multiplying f’ with p(z|v), and the stochas-
tic connection between the messages and the received sequences
would be the same in both cases, i.e., the decoder for the new
channel works for the original channel as well. In light of these
facts, the achievability of the region in (42)—(45) implies the
achievability of the region in Theorem 3. We note that although
one reduces the rate transmitted to the first user by replacing X
with V, i.e., by using channel pre-fixing, because the rate goes
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down from I(X;Y1|U) to I(V;Y1|U), channel pre-fixing re-
duces the rate eavesdropped by the second user as well. Thus,
if channel] pre-fixing reduces the rate going to the eavesdropper
more than the rate transmitted to the first user, the equivocation
can be improved. Hence, the main idea of channel pre-fixing is
to introduce more randomness to the channel which might im-
prove the confidentiality of the private message by harming the
eavesdropper more than harming the first user.

Similar to the achievability proof of Theorem 3, the converse
proof in [2] also provides new tools. In particular, the construc-
tion of the auxiliary random variables U and V, and the bound-
ing technique for the equivocation proved to be very useful for
many subsequent secrecy problems. Indeed, both of these con-
tributions are inspired by the Csiszar-Korner sum identity, which
is introduced in [2] as well. The Csiszar-Korner sum identity is
given as follows.

Lemma 1 ([2]) Let T be an arbitrary random variable, and
Y?, Y3 be two length-n random vectors. We have

n

n
Z I(Ygt 0y Vil T, Y7 H) = Z IV Yaul T, Yy ))-

i=1

(46)

In the converse proof of Theorem 3, by using Lemma 1, [2]
has showed that

g=1

n

nRe < Y I(Wi; Yual Wo, Y™, Yty )

i=1

— I(Wh; YailWo, V{1, Y5t 0) + e (47)
where ¢, — 0 as n -+ oo. In view of (47), [2] has iden-
tified the auxiliary random variables U; and V; as U; =
(Wo, Vi1, 2"1.“)) and V; = (W1,U;). Once the equivoca-
tion is bounde(i as 1n (47) and the auxiliary random variables are
identified, the bounds on Ry and R; can be obtained in a rather
straightforward way. Thus, the Csiszar-Korner sum identity in
Lemma 1 can be viewed as the most important instrument to
obtain the converse proof for Theorem 3.

We note an interesting point about Theorem 3, by focus-
ing on the scenario where the transmitter sends only a private
message to the first user and this message needs to be kept
hidden as much as possible from the second user (eavesdrop-
per). Hence, this scenario can be obtained from the general
scenario introduced for the BCC in subsection II-A by setting
Ry = Ry = R.s = 0. Moreover, this scenario can be viewed as
the generalization of Wyner’s scenario from the degraded broad-
cast channel to the general, not necessarily degraded, broad-
cast channel. The corresponding capacity-equivocation region
is given as follows.

Theorem 4 ([2]) The capacity-equivocation region of the
broadcast channel with only one private message is given by
the union of rate pairs (R;, R.;) satisfying

Ry < I(V;1),
Rey < I(V;YA|U) — I(V3 Y2|U)

(48)
49)
whereU -V —- X - Y1,Ys.

The interesting point revealed by Theorem 4 is that al-
though there is only one message to be transmitted, we need
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rate-splitting and superposition coding to achieve the capacity-
equivocation region. In particular, this single message needs
to be divided into two parts, where the first part is mapped to
codewords generated by I/ and the second part is superimposed
on the first one and mapped to the codewords generated by V.
Moreover, as (49) suggests, the first part of the private message
sent with U does not contribute to the equivocation. Indeed, it
can be shown that this first part of the private message is de-
coded by the second user (eavesdropper) as well. We also note
that, as Theorem 2 shows, if the broadcast channel is degraded,
there is no need for rate-splitting or superposition coding to at-
tain the capacity-equivocation region of the broadcast channel
with only one private message.

Finally, we conclude our discussion about the discrete mem-
oryless BCC by obtaining the secrecy capacity in a general, not
necessarily degraded, broadcast channel. By setting Ro; = Ry
in Theorem 4, we can obtain the secrecy capacity as follows.

UV Ry, HVin|U) = I(V; Y2|U)
= B, 2P0 1V I =) = IOV 100 =)

(50)
< s Zp max {I(V;Y1|U =u)

—I(V;Ya|U = u)] 51)

=, mpx, max [[ViIU =) = 10V %00 =)

(52)
= max I(V;Y1) - I(V;Ya). (53)

V- X2Y;

This result is formally stated in the following corollary.
Corollary 2 ([2]) The secrecy capacity of a general, not nec-

essarily degraded, wiretap channel is given by

1(V;Ya)

max I(Vivi) - (54)

where V — X — Y1, Ys.

This corollary states that as opposed to the degraded wire-
tap channel, to achieve the secrecy capacity of a general, not
necessarily degraded, wiretap channel, channel pre-fixing might
be necessary. In other words, although, in view of Corollary 1,
V = X achieves the secrecy capacity of a degraded wiretap
channel, V = X might be sub-optimal in a general, not neces-
sarily degraded, wiretap channel.

A. Gaussian MIMO BCC

In this section, we review the results for the capacity-
equivocation region of the Gaussian MIMO BCC. First, we
present an achievable rate region which can be obtained by eval-
uating the region in Theorem 1 by using certain selections for
the auxiliary random variables U, V3, and V5 in Theorem 1. In
particular, the following achievable rate region corresponds to a
jointly Gaussian selection of U, V3, and V5 with a certain corre-
lation structure.
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Theorem 5: An achievable region for the Gaussian MIMO
BCC is given by

conv (ng URgl) (55)
where R4 consists of the rate tuples satisfying
1 |H;SH +]1
Ro = min =1 J , 56
= B2 P H (K, + Ko)H] +1] (56)
1, [Hi(Ki+Ko)H] +17
Ry = 1 , 57
P2 T KGHT + 1)) G7
1
Ry = 5 log |HK.H] +1J, (58)
K, +Ky)H] +1
R61=l10g|H1( 1t ?r) 1+
2 [H;KoH| + I|
{HngHQ + I‘

1
Rey = 3 Liog |H2K2H;r +1| - 5 log [HuKoHI +1] (60)

for some positive semi-definite matrices K; and Ko such that
K; 4+ K3 < S, and Ro; can be obtained from R 12 by swapping
the indices 1 and 2.

Theorem 5 states that the common message, for which a co-
variance matrix S — K; — K, is allotted, should be encoded by
using a standard Gaussian codebook generated by using U, and
the private messages, for which covariance matrices K; and K,
are allotted, need to be encoded by using dirty-paper coding
(DPC) [14]. The codewords for the private messages need to
be generated by using V; and V5. The receivers first decode the
common message by treating the private messages as noise, and
then each receiver decodes the private message intended for it-
self. Depending on the encoding order used in DPC, one of the
users gets a clean link for the transmission of its private mes-
sage, where there is no interference originating from the other
user’s private message.

Next, we note that the inner bound in Theorem 6 can po-
tentially be improved by using the following observation: If
(Ro, Ry, Rz, Re1, Reg) is an achievable rate tuple, the rate tu-
ple (Rp — a — B, Ry + @, Ry + 3, Re1, Re2) is also achievable
for any oz,ﬁ satisfying 0 < 0,0 < B,a+ 8 < Rp. In other
words, since the common message is decoded by both users,
its rate can be given up in the favor of the rates of the private
messages without changing the equivocations. Using this obser-
vation and Theorem 6, the achievability of the following region
can be shown.

Theorem 6: An achievable region for the Gaussian MIMO
BCC is given by

conv (Rm URZl) 61
where R 12 consists of the rate tuples satisfying
1 |H,;SH] +1]
< min =lo J , (62
Ho < moin, 5 log IH,;(K; + Kp)H] +1] (2
B < 1 log |H,;SH] +1
Rot Fiu < i 8 [E K, + KoyH) 11
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1 Hy (K, + I(2)I‘I;r +1]
=1
3 T HKGH v
[FL;SH] +1|
[H;(K; + KQ}HT +1]

(63)

Ro+ R < mm log

= Iog|H2K2H2 +1|,
|H,;SH] +]1]
Ry + Ry + Ry < mm 10
oIS R R (K ¢ Kz)HT 1
[H;(K; + K2)H] +1
- lo
2 8 T HLKH] +1)|
1
+ 5 log [H.K,H) +1,
iHl (K1 + KQ)HT + I|
[H; K H] +1
1 [Ho(K; + K2)H] +1]
- 5 108 T ’
2 [H, Ko H] +1
% log |HoKoHJ + I

(64)

(63

R < l

(66)
ReZ S

1
~ 5 log [H, KoH + 1),

R.1 <Ry,
Re2 S R2

(67)

(68)
(69)

for some positive semi-definite matrices K; and K such that
K; +X; = S, and Ry can be obtained from R12 by swapping
the indices 1 and 2.

Similar to the inner bound for the discrete memoryless
BCC in Theorem 1, the achievable region for the Gaussian
MIMO channel in Theorem 6 is also known to be partially
tight although, in general, it is unknown whether it is ex-
actly equal to the capacity-equivocation region of the Gaus-
sian MIMO BCC. Next, we present the cases where the inner
bound in Theorem 6 is partially tight. To this end, we note
that the capacity-equivocation region of the Gaussian MIMO
BCC is a five-dimensional region (R, R1, Ry, Re1, Re2). As
of now, two three-dimensional sub-regions of the capacity-
equivocation region have been obtained, where these two sub-
regions are the dimension-wise largest known sub-regions of the
capacity-equivocation region [15]-[19]. These two dimension-

wise largest known sub-regions correspond to the followmg sce- .

narios.

« In the first scenario, there is a common message sent to both
users, and a private message intended to the first user where
this private message needs to be kept hidden as much as pos-
sible from the second user. Hence, this scenario can be ob-
tained by setting Rp = Reo = 0 in the most general scenario
for the Gaussian MIMO BCC. Thus, this scenario is identi-
cal to the one that was studied by [2], and can be viewed as
an application of their scenario to the Gaussian MIMO BCC.
Moreover, since the capacity-equivocation region of this sce-
nario has been obtained by [2] for discrete memoryless BCC,
the single-letter description for the capacity-equivocation re-
gion of the Gaussian MIMO BCC exists. To obtain capacity-
equivocation of the Gaussian MIMO BCC in an explicit form,
one needs to find to the optimal (U, V,X) to evaluate the

single-letter description in Theorem 3. This is accomplished
in [15] and [16], and it is shown that this explicit form of the
capacity-equivocation region is the same as the achievable
region that can be obtained from Theorem 6, that is jointly
Gaussian (U, V, X)) is optimal.
« In the second scenario, there is a common message sent
to both users, and a private message for each user where
the private messages need to be transmitted in perfect se-
crecy. Hence, this scenario can be obtained by setting Re; =
Ry and Rz = Rq in the most general scenario for the Gaus-
sian MIMO BCC. Thus, the second scenario addresses the
description of the secrecy capacity region of the Gaussian
MIMO BCC. Unlike to the first scenario, the single-letter de-
“scription for the capacity-equivocation region of this scenario
does not exist since the secrecy capacity region of the discrete
memoryless BCC is unknown in general. Despite the absence
of a single-letter description, the secrecy capacity region of
the Gaussian MIMO BCC has been obtained in [17]-[19],
and is the same as the achievable region that can be obtained
from Theorem 6.
In the upcoming two sub-sections, we present the capacity
results for these two scenarios and some specializations of these
capacity results.

A.1 First Scenario

We start with the capacity result for the first scenario, i.e., the
capacity-equivocation region of the Gaussian MIMO BCC with
common and only one private messages, which is stated in the
following theorem.

Theorem 7 ([15], [16]) The capacity-equivocation region of
the Gaussian MIMO BCC with common and only one private
message is given by the union of rate triples (R, B1, Re1) sat-
isfying

1. [H;SH] +1]

< =1 7
Bo < ity 5 8 KA +1° 70
Ry < min =1 'HSHTH' L H,KH/ +1]
RO + 1 __;2111 Og }H KHT 'Jr‘II Ogl 1 3
(71)

Re1 < %log [H;KH] +1| - —;—log [H,KH, +]1
(72)

where K is a positive semi-definite matrix such that K < S.
We note that the capacity-equivocation region in Theorem 7
can be attained by the inner bound in Theorem 6 by setting Ry =
R = 0,Ke = 0, and K; = K. Thus, Theorem 6 is tight for
this case. Besides Theorem 6, the achievability of the capacity-
equivocation region in Theorem 7 can be shown by evaluating
the single-letter description for the capacity-equivocation region
given in Theorem 3 for the following selections of U, V, and X:
i) U is selected as a Gaussian random vector with zero-mean and
covariance matrix S — K and ii) we set V = X = U + U’ where
U’ is a Gaussian random vector with zero-mean and covariance
matrix K, and is independent of U. The converse proof of The-
orem 7 is more involved than the achievability proof. In par-
ticular, to provide a converse proof, one needs to show that this
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selection of (U, V,X) is sufficient to exhaust the single-letter
description given in Theorem 3. This is accomplished in [15]
and [16] by using the channel enhancement technique [10] and
some extremal inequalities.

Next, we investigate Theorem 7 for special cases. The first
special case is the secrecy capacity region of the Gaussian
MIMO BCC with common and only one private message, which
can be obtained from Theorem 7 by setting R; = R;.

Corollary 3 ([20]) The secrecy capacity region of the Gaus-
sian MIMO BCC with common and only one private message is
given by the union of rate pairs (Ro, R; ) satisfying

1. |H;SH] +1
Ry < min - log —— 21—
0= 222 B THKH] 1) 7
1 1
R < 51og|HlKH1T +1| - log [H.KH; +1I] (74

where K is a positive semi-definite matrix such that K < S.

The second special scenario is the capacity-equivocation re-
gion of the Gaussian MIMO BCC with only one private message
and no common message, which can be obtained from Theo-
rem 7 by setting Ry = 0.

Corollary 4 ([21]) The capacity-equivocation region of the
Gaussian MIMO BCC with only one private message is given
by the union of rate pairs (R;, R,1) satisfying

1
Ry < - log H;SH{ +1, (75)

1 1
Ry < ; log |H:KH{ 41| - 5 log|H;KH] +1|  (76)

where K is a positive semi-definite matrix such that K < S.

This corollary can be viewed as Gaussian MIMO version of
the capacity result in Theorem 4, where although there is a sin-
gle message to be transmitted, rate-splitting and superposition
coding was necessary to attain the capacity-equivocation region.
The capacity result in this corollary provides a concrete exam-
ple to show this necessity. In particular, this corollary states that
the private message of the first user needs to be decomposed
into two parts, and these two parts need to be encoded by using
superposition coding [22]. The transmitter allots the covariance
matrix S — K to the first part, and the covariance matrix K to
the second part, where the the first part does not contribute to
the equivocation, and the entire equivocation comes from the
second part.

We conclude this section by presenting the secrecy capacity
of the Gaussian MIMO BCC, which can be obtained from The-
orem 7 by setting Rg = 0 and B; = R,1.

Corollary 5 ([23]-[26]) The secrecy capacity of the Gaus-
sian MIMO BCC is given by

1
max -

1
T _ = T
OjstzlonglKH1 +1| - S log [HKH +1. (77)

This corollary states that the secrecy capacity of the Gaus-
sian MIMO BCC can be achieved by selecting V = X as
a zero-mean Gaussian vector with covariance matrix K in
Corollary 2. There are various proofs of Corollary 5 [23]-[26].
Most of these proofs [23]-[25] rely on a Sato-type outer
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bound [27]. In this outer bound, first a new channel is con-
structed by providing the second user’s (eavesdropper’s) ob-
servation to the first user. Hence, the secrecy capacity of this
new channel serves as an outer bound for the secrecy capac-
ity of the original channel. Moreover, the new channel is de-
graded and its secrecy capacity is known in a single-letter form
due to Wyner [1], see Corollary 1. We note that since this new
channel is degraded, there is no auxiliary random variable in
its secrecy capacity, and its secrecy capacity can be obtained
in an explicit form by showing the optimality of Gaussian X.
Second, this outer bound is tightened by noting the fact that
the secrecy capacity in a broadcast channel does not depend on
the entire distribution p(y1, y2|x) but the marginal distributions
p(y1]z) and p(yz|x). Thus, this Sato-type outer bound can be
tightened by minimizing it over all possible joint distributions
g(y1, y2|x) such that the corresponding marginal distributions
g(y1|z) and ¢(y2|x) are equal to the ones in the original channel,
ie., g(y1|z) = p(y1lz) and g(ya|z) = p(ya}z). After this tight-
ening, it is shown that this outer bound is equal to the achievable
secrecy rate.

The proofs in [23]-[25] involve rather complicated optimiza-
tion problems, however, indeed, a simpler proof can be pro-
vided as was done in [26] by using channel enhancement [10].
The proofs in [23]-[25] which rely on a Sato-type outer bound
reveal that for any Gaussian MIMO BCC, there exists a de-
graded Gaussian MIMO BCC whose secrecy capacity is po-
tentially larger than the secrecy capacity of the original chan-
nel, and thus the secrecy capacity of the degraded channel is an
outer bound for the secrecy capacity of the original channel. In
fact, due to the insensitivity of the secrecy capacity on the joint
distribution, there exist many degraded Gaussian MIMO BCCs,
which provide potentially loose outer bounds. The development
in [23]-[25] shows that, at least one of these degraded Gaus-
sian MIMO BCCs have secrecy capacity which equals to the
secrecy capacity of the original channel. Indeed, this outline of
the proofs [23]-[25] relying on Sato-type outer bound is a man-
ifestation of the channel enhancement technique [10], where ex-
actly the same steps are taken to prove a capacity result. This
similarity is noticed in [26] where an alternative proof for the
secrecy capacity of the Gaussian MIMO BCC is provided by
using channel enhancement.

We note that the optimal covariance matrix K* that attains
the maximum in (77) can be obtained in an explicit form by us-
ing the generalized eigenvalue decomposition [28] as it is done
in {7} and [29]. The last point we discuss about Corollary 5
is that to achieve the secrecy capacity of the Gaussian MIMO
BCC, channel pre-fixing is not necessary, i.e., V = X is an opti-
mal selection. Interestingly, [7] shows that this secrecy capacity
can also be achieved by using channel pre-fixing. In particu-
lar, [7] shows that the secrecy capacity of the Gaussian MIMO

BCC also admits the following form.
Theorem 8 ([7]) The secrecy capacity of the Gaussian

MIMO BCC is given by

H.SH| +1]

1, |H2SHJ +1
®H,KH] +1 2

. (78
[HKH] +1] (78)

1
max —
0<K=<S 2

This alternative form of the secrecy capacity of the Gaussian
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MIMO BCC can be achieved by selecting V' as a zero-mean
Gaussian random vector with covariance matrix S—K, and X =
V + V', where V' is also a zero-mean Gaussian random vector
with covariance matrix K, and is independent of V. We note
that in this alternative form of the secrecy capacity, one does not
set V = X, i.e., channel pre-fixing is used.

A.2 Second Scenario

The second dimension-wise largest known sub-region, for
which the inner bound in Theorem 6 is tight, is the secrecy ca-
pacity region of the Gaussian MIMO BCC [17]-[19]. In other
words, in the second scenario, there is a common message sent
to both users and a private message for each user, where the
private messages need to be transmitted in perfect secrecy, i.e.,
R.1 = Ry and R.» = R3. We note that as opposed to the first
scenario, where the capacity-equivocation region is known for
the discrete memoryless BCC as it is given in Theorem 3, for the
second scenario, the capacity-equivocation region is not known
for the discrete memoryless channel in general. However, as the
following theorem states, the capacity-equivocation region cor-
responding to the second scenario can be obtained for the Gaus-
sian MIMO BCC.

Theorem 9 ([17]-[19]) The secrecy capacity region of the
Gaussian MIMO BCC is given by

S—DPC S—DPC
R15 = Ra;

(79)

where RS SPPC g given by the union of rate triples

(Ro, R1, Rz) satisfying

1 |H;SH] +1
Ry < m n=lo J , 80
=122 8 TH, (K, + Kz)H] +1] (80)
T
R <L 1 log |H1(K1+K2T)H1 +1
2 HK-H, +1|
1. |Ha(K; +K2)HJ +1
-1 1
2 % HKH] +1] @1
1 1
R; < 3 log|[HKoH; +1| - Slog HLKoH[ +1] (82)

for some positive semi-definite matrices K; and K such that
Ki+Ky; <X 8S. ’RS ~DPC can be obtained from RS DPC by
swapping the 1nd1ces 1 and 2.

This theorem implies that the secrecy capacity region of the
Gaussian MIMO BCC can be obtained from the inner bound
given in Theorem 6 by setting R.; = R; and Rey = Ry. We
remind that DPC [14] is used to encode the private messages in
Theorem 6, where depending on the encoding order used, one
of the two users gets a clean link because it does not see any
interference originating from the existence of the pther user. As
mentioned earlier, the difference of this DPC from the one used
when there is no secrecy concern is the additional random bin-
ning introduced on top of the already present binning. This ad-
ditional binning is necessitated by the secrecy concern. Conse-
quently, this double binning provides codewords for the private
messages, by using V; and V5, with three indices. One of these
three indices is a dummy fixed index to ensure the joint typi-
cality of the codewords generated by V; and V5, and the other
two indices carry the parts of the private messages, i.e., each

private message is divided into two parts. One of these two in-
dices provides the necessary protection for the confidentiality of
the other index. Thus, one of these two indices is transmitted in
perfect secrecy, and the other index, the one providing the neces-
sary protection, does not contribute to the equivocation. Conse-
quently, if we specialize the DPC scheme to the perfect secrecy
case here, the information content of the index providing protec-
tion for the other one is replaced by some dummy content. This
specialization of DPC to the perfect secrecy case is called secret
DPC (S-DPC) [71, [17]-[19]. This is why we have superscript
S-DPC in (79).

Since S-DPC corresponds to a specialization of DPC, in S-
DPC, depending on the encoding order used, a user gets a clean
link, where there is no interference from the other user’s confi-
dential message. Thus, one expects that the two achievable rate
regions, ie., Riz X C and Ry OFC, arising from two possi-
ble encoding orders, should not be equal, and taking a convex
closure of these two regions, i.e., the region conv(R$; PFC U

5= DPC) should yield a larger achievable rate region. How-
ever, Theorem 9 reveals that both achievable rate regions are
identical, and are equal to the secrecy capacity region of the
Gaussian MIMO BCC. Thus, to achieve the secrecy capacity re-
gion of the Gaussian MIMO BCC, anyone of the two possible
encoding orders used in S-DPC, which lead to the achievable re-
gions RS ;DPC dRs ~DPC s sufficient. This invariance prop-
erty of the S-DPC has connections with the capacity region of
the Gaussian MIMO broadcast channel with common and pri-
vate messages [30]-[32], where there is no secrecy concern on
the private messages. A more detailed discussion about the in-
variance of S-DPC with respect to the encoding order can be
found in [17] and [18].

Next, we consider the specializations of the capacity result
in Theorem 9. First, we note that if we disable one of the two
confidential messages by setting its rate to zero, we recover the

" secrecy capacity region of the Gaussian MIMO BCC with com-

mon and only one confidential message given in Corollary 3.
In addition to one of the two confidential messages, if we also
disable the common message by setting its rate to zero, we re-
cover the secrecy capacity of the Gaussian MIMO BCC stated
in Corollary 5. The final specialization of the capacity result in
Theorem 9 can be obtained by disabling only the common mes-
sage by setting its rate to zero. The corresponding result is stated
in the following corollary.

Corollary 6 ([7]) The secrecy capacity region of the Gaus-
sian MIMO BCC without a common message is given by the
union of rate pairs (R, Rg) satisfying

1, |H;sSH{ +I 1. |H.SH] +1|
R —1 e —log (83
1= 2% KH] + 1 2 °|H.KHj +1] 3)
1
Ry<3 log [H.KH, + 1| — 5 log H:KH] +1  (84)

for some positive semi-definite matrix K satisfying K < S.

As pointed out in [7], the secrecy capacity region in Corol-
lary 6 is rectangular which is implied by the fact that both (83)
and (84) have the same maximizer. Thus, the secrecy capacity
region in Corollary 6 can be restated as follows.

Corollary 7 ([7]) The secrecy capacity region of the Gaus-
sian MIMO BCC without common message is given by the
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union of rate pairs (Ry, Ry) satisfying

R < I |[HLSHY +1| 1. [HpSHy +1
'=0xKEs 2 S HLKH, +1] 2 |H,KH] +1|’
(85)

Ry < max —1og|H2KH2 +1| - —log|H1KHT +1].

0<K=
(86)
Finally, we note that in a Gaussian MIMO BCC without a
common message, both users can achieve their secrecy capacity
because in view of Theorem 8, (85) is the secrecy capacity of the

first user, and in view of Corollary 5, (86) is the secrecy capacity
of the second user.

IV. MULTI-RECEIVER WIRETAP CHANNELS

Similar to our presentation for the BCC, here also, we first
present the results for the discrete memoryless multi-receiver
wiretap channel, and next present the results for the Gaussian
MIMO channel. We start with the best known inner bound for
the capacity region of the discrete memoryless multi-receiver
wiretap channel.

Theorem 10 ([33]) The rate tuples (R,1, R.1, Rp2, Rs2) sat-
isfying

Ry < min I(UY;) + 1(Vi; a|U) ~ I(U, V1; 2),

=4,

(87)
J=L
(88)
Ry + Ry < mlln I(U;Y;) + I(Vi; YA |U) + I(Va; Ya|U)
J_.
—I(Vi; o|U) = I(U, V1, Va3 Z), (89)
Rsl + Rpl < mlln I(Ua }fj) I(‘/17Y1|U) (90)
J_
=1,
2
> B + Fopr < min I(U;Y)) + 1V YalU) + 1(Vy; 1o |U)
i=1 o
- I(V2; Z|U), 92)
2
Y Ry +Rp< min I(U; Y;) + I(Vis Ya|U) + 1(Va; Ya|U)
- j=1
j=1

2
Z st -+ Rpj < ILI{
j=1 -

- I(Vi;Va|U)

(93)
IU;Y;) + I(Vi; a|U) + I(Va; Yo |U)

(94)

for some U,Vi, and V5 such that (U, V1,15) — X —
(Y1,Y3, Z) are achievable.

This inner bound is obtained by using rate-splitting, superpo-
sition coding {22] and Marton coding [13]. In particular, each
public and confidential message pair (W,;, Wyp;) is divided into
two parts as (W, Wp;) and (W2, W2;). After rate-splitting,
the first parts of pubhc and conﬁdentlal message pairs, i.e.,
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(Wh, W) and (W, W,,), are encoded by using the code-
words generated through U. These codewords constitute the first
layer of the superposition coding. In the second layer of the
superposition coding, the second parts of the public and con-
fidential message pairs are encoded. In particular, the second
part of each public and confidential message pair (W2, W2;)
is encoded to the codewords generated by using V;, where en-
coding is performed by using Marton’s coding. Similar to the
use of Marton’s coding for the inner bound in Theorem 1, here
also Marton’s coding is slightly modified due to the presence
of the secrecy requirement. In particular, similar to Theorem 1,
here also, an additional level of binning is required to meet the
secrecy constraints, on top of the already existing binning in
Marton’s coding. Indeed, here additional binning is necessitated
by not only the presence of the secrecy requirement but also
the presence of the public messages. In other words, the public
messages have a dual role of both carrying information and also
providing protection for the confidential messages.

Next, we consider the specializations of Theorem 10 to
the degraded multi-receiver wiretap channel. For the degraded
multi-receiver wiretap channel, first, we provide the following
achievable rate region which can be obtained from the one in
Theorem 10 by setting U = V, and Vi = X which satisfy the
Markov chain U — X — Y1, Ys, Z, and eliminating the redun-
dant bounds.

Corollary 8 ([33], [34]) In a degraded multi-receiver wire-
tap channel, the rate tuples (Rp1, Rq1, Rp2, Rs2) satisfying

Re < I(U;Y2) - I(U; Z), 95)
Ray + Ry < I(U; Y2) + I(X; Y1|U)
- I1(X;2), (96)
Rs2 + Ry < I(U; Ya), o7
R + Rso + Rpp < I(U; Y2) + I(X;; Y1|U)
- I(X; Z|U), (98)
R + Rsa + Rp1 + Rp2 S I(UY2) + I(X; Y1 |U)  (99)

are achievable, where U and X satisfy the following Markov
chain

U->X—->YT—->Y— 27 (100)

As mentioned earlier, this inner bound for the degraded multi-
receiver wiretap channel can be obtained by a proper selection
of the auxiliary random variables U, V1, and V> in Theorem 10.
However, Corollary 8 can also be obtained without invoking
Theorem 10. In this alternative derivation, only superposition
coding is used, i.e., as opposed to Theorem 10, there is no need
to use Marton’s coding. The alternative derivation of Corollary 8
consists of two steps. As a first step, using superposition coding,
one can show that the rate tuples (Rp1, Rs1, Rp2, Rs2) satisfy-
ing

Ry < I(U; 2), (101)
Rs2 < I(U;Y2) — I(U; 2), (102)
Ry < I(X; Z|U), (103)
Ry < I(X;VA|U) — I(X; Z|U) (104)
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are achievable, where (U, X} satisfy (100). As the second step

for the alternative derivation of Corollary 8, one can use the fol-

lowing facts.

« Since confidential messages can be considered as public mes-
sages as well, each legitimate user’s confidential message
rate R,; can be given up in the favor of its public mes-
sage rate Rp;, ie., if (Rp1, Rs1, Rp2, Rs2) is achievable,
(Rp1 + a1, Rt — o1, Bpo+ a2, Rs2 — i) is also achievable
for non-negative (a1, arg) pairs satisfying o; < R,;.

« Since the channel is degraded, the second legitimate user’s
confidential message rate R,y can be given up in the favor
of the first legitimate user’s public and confidential message
rates Rp; and Ry, ie., if (Rp1, R, Rp2, Rs2) is achievable,
(Rp1 + @, Re1 + B8, Rpa, Rea — a — f) is also achievable for
non-negative (o, §) pairs satisfying & + 8 < Rg.

o Since the channel is degraded, the second legitimate user’s
public message rate R0 can be given up in the favor of
the first legitimate userk’s public message rate Ry, ie., if
(.l?/‘;l,Rgl,Rpg,Rgz) is achievable, (Rpl + o, Re1, Ry —
a, Rs2) is also achievable for any non-negative o satisfying
e/ S Rp29

in conjunction with Fourier-Motzkin elimination, and show that

the region given in (101)-(104) is equivalent to the one given in

Corollary 8.

We next present an outer bound for the capacity region of the
degraded multi-receiver wiretap channel which demonstrates
the partial tightness of the inner bound in Corollary 8.

Theorem 11 ([33], [34]) The capacity region of the degraded
multi-receiver wiretap channel with public and confidential
messages is contained in the union of rate tuples (Rpi, Rq1,
Rp2, Rs2) satisfying

Re < I(U;Y2) ~ I(U; Z), (105)
Ra + Re < I(U; Y2) + (X 11|U)
- I(X;2), (106)
Rpp+ R < I(U;Ya), (107)
Rp1 + Rs1 + Rpa + Rz < I(U; Ya) + I(X; Y1|U) - (108)

for some (U, X) such that U, X exhibit the following Markov
chain ,

UsX—-Y1 Y, 2. (109)

This outer bound provides a partial converse for the capacity
region of the degraded multi-receiver wiretap channel because
the only difference between the inner bound in Corollary 8 and
the outer bound in Theorem 11 is the bound on Rs1 + Ry2 + Rso
given by (98). In particular, in addition to the bounds defining
the outer bound for the capacity region, the inner bound includes
the following constraint

Rg + Rpz + Rep < I(U; Y2) + I(X; Y1 |U) ~ I(X; Z|U).
(110)

Besides that, the inner and outer bounds are identical. However,
still there are cases where the capacity region can be obtained.
The first case where the inner bound in Corollary 8 and the outer
bound in Theorem 11 match can be obtained by setting the con-
fidential message rate of the first legitimate user to zero, i.e.,
R, =0.

Corollary 9 ([33], [34]) The capacity region of the degraded
multi-receiver wiretap channel without the first legitimate user’s
confidential message is given by the union of rate triples
(Rpla Rsl s Rs2) SatiSfying

(111)

Rg < I(U;Y2) — I(U; Z),
Ry + Ry < I(U; Ya), (112)
Rp1 + Rp2 + Rs2 < I(U; Y2) + I(X; Y1 |U) (113)
where U and X exhibit the following Markov chain
U—-»X—-Y Y — 2 (114)

The second case where the inner bound in Corollary 8 and the
outer bound in Theorem 11 match can be obtained by setting the
public message rate of the second legitimate user to zero, i.e.,
Ry =0.

Corollary 10 ([33],[34]) The capacity region of the de-
graded multi-receiver wiretap channel without the second legit-
imate user’s public message is given by the union of rate triples
(Rp1, Rs1, Rs2) satisfying

Rs2 < I(U;Ys) — I(U; Z), (115)
Ra + R < I(U; Ya) + (X5 W|U) — I(X; Z),

(116)

Rp1 + Rs1 + Re2 < I(U; Y2) + I(X; 11 |U) 117)
where U, X exhibit the following Markov chain

U—-+X-Y Y —Z (118)

Corollary 10 also implies that the inner bound in Corollary 8
and the outer bound in Theorem 11 match on the secrecy ca-
pacity region of the degraded multi-receiver wiretap channel.
In particular, Corollary 8 and the outer bound in Theorem 11
match if the rates of both public messages are set to zero, i.e.,
R, = Ry2 = 0. The secrecy capacity region of the degraded
multi-receiver wiretap channel is given by the following corol-
lary.

Corollary 11 ([35]-[37]) The secrecy capacity region of the
degraded multi-receiver wiretap channel is given by the union
of rate pairs (R,1, Rs2) satisfying®

Ry SI(UaY'Z)_I(Uv Z)’ (119)
Rg < I(X;n|U) - I(X; Z|U) (120)

where U, X exhibit the following Markov chain
U=X-Y1 Y= Z azn

We note that in addition to its representation in Corollary 11,
the secrecy capacity region of the degraded multi-receiver wire-
tap channel can be stated in an alternative form as the union of
rate pairs (Rg1, Re2) satisfying

Rex < I(U3Y3) - I(U; Z),
Rsl + Rs2 S I(Ua}IZ) + I(X7}/IIU} - I(X,Z)

where U, X exhibit the Markov chain in (121).

(122)
(123)

SThe secrecy capacity region of the degraded multi-receiver wiretap channel
for an arbitrary number of legitimate users, i.e., for more than two legitimate
users, can be found in [36] and [37].
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A. Gaussian MIMO Multi-Receiver Wiretap Channels

In this section, we present the existing results for the capacity
region of the Gaussian MIMO multi-receiver wiretap channel.
We start with an inner bound for the capacity region of the Gaus-
sian MIMO channel, where this inner bound can be obtained by
using a specific selection of (U, V4, V3) in Theorem 10.

Theorem 12 ({33]) An achievable rate region for the Gaus-
sian MIMO multi-receiver wiretap channel is given by

conv (Rw UR21>

where Rz is given by the union of rate tuples (R, R, Ry,
R.») satisfying

(124)

|H: (K; + Ko)H] +1
HKH +1

L Hz(K; + K)H] +1]

5 108 T )

2 }HzKQHZ -+ I|

}.10 |H1(K1 -+ Kg)Hir -+ Ii

2 T HKH] + 1

R < =log

1
2

(125)

Rsl + Rpl g

(126)

IA

1 1
-RSQ 5 log IHQKQH;— -+ If — 5 log gHZK2H§ + I|a

(127)

Rsa+ Ry < %log HoKoH, + 1 (128)
where K and K are positive semi-definite matrices satisfying
K1+ Ky =% 8. Ro; can be obtained from Ry, by swapping the
indices 1 and 2.

This inner bound can be obtained from the achievable rate re-
gion in Theorem 10 by selecting U = ¢ and V1, V3 as jointly
Gaussian random vectors. In particular, the pairs of confidential
and public messages are encoded by using DPC [14], where a
covariance matrix K3 is allotted for the second legitimate user’s
confidential and public message pair, and the covariance ma-
trix K is allotted for the first legitimate user’s confidential and
public message pair. To obtain the achievable rate region R 12,
the first legitimate user’s confidential and public message pair
is encoded by a standard Gaussian codebook generated by us-
ing the Gaussian random vector V; with covariance matrix K.
Next, the second legitimate user’s confidential and public mes-
sage pair is encoded by using DPC such that the second legiti-
mate user observes an interference-free link between itself and
the transmitter. The second achievable rate region Rs; is ob-
tained by changing the encoding order, i.e., to obtain Re;z, the
second legitimate user’s messages are encoded first, and next,
the first legitimate user’s messages are encoded.

Similar to the inner bound in Theorem 10, under certain sce-
narios, the inner bound in Theorem 12 is tight for the degraded
Gaussian MIMO channel. However, there is also a case where
the inner bound in Theorem 12 is shown to be tight for the
non-degraded Gaussian MIMO channel. This case can be ob-
tained by setting the rates of both public messages to zero, i.e.,
Ry = Rpz = 0. In other words, the inner bound in Theo-
rem 12 matches the secrecy capacity region of the Gaussian
MIMO multi-receiver wiretap channel. This result is stated in
the following theorem.
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Theorem 13 ([8], [9]) The secrecy capacity region of the
Gaussian MIMO multi-receiver wiretap channel is given by’

conv (Rn U Rzl)

where Rz is given by the union of rate pairs (Rs1, Rso) satis-
fying

(129)

|H1(K1 - KQ)H;F 4 II
'HlKQH;r -+ I|
Hz(K; + Ko)H] +1

1
| ,
2 % T H KH] +1]

1
Ra < 3 log

(130)

1 1
Ry < 5 log |HK.Hy + 1| — 5 log |HzKH, + 1] (131)

where K; and K are positive semi-definite matrices satisfying
K1 + K3z < 8. R21 can be obtained from R 12 by swapping the
indices 1 and 2.

This theorem states that the inner bound in Theorem 12 can
attain the the secrecy capacity region of the Gaussian MIMO
multi-receiver wiretap channel if one sets Ry = Ry = O in
Theorem 12. Thus, using DPC, one can achieve the secrecy ca-
pacity region of the Gaussian multi-receiver wiretap channel.
There is a slight difference between the use of DPC for Theo-
rem 12 and the use of DPC for Theorem 13. In Theorem 12,
DPC was used to generate codewords that carry both the confi-
dential message and the public message. In other words, code-
words generated through V; carries the pair of confidential and
public messages, where besides their information content, pub-
lic messages provide the necessary protection for the confiden-
tial messages. However, in Theorem 13, the public messages are
replaced with dummy messages with no information content,
where the sole purpose of these dummy messages is to protect
the confidential messages from the eavesdropper. We note that
the difference between the DPC used to achieve Theorem 12
and the DPC used to achieve Theorem 13 is similar to the differ-
ence between the DPC used to achieve Theorem 6 and the DPC,
which was called S-DPC, used to achieve Theorem 9.

Next, we provide an outline of the converse proof of Theo-
rem 13. One of the main challenges to provide a converse proof
for Theorem 13 is that Theorem 13 gives the secrecy capacity
region of a non-degraded multi-receiver wiretap channel and al-
though there is a single-letter expression for the secrecy capacity
region of the degraded multi-receiver wiretap channel, there is
no such description for the general, not necessarily degraded,
multi-receiver wiretap channel. However, despite the lack of a
single-letter description for the secrecy: capacity region of the
non-degraded multi-receiver wiretap channel, a converse proof
is provided in [8] and [9]. This converse proof consists of two
main steps. In the first step, [8] and [9] obtains the secrecy ca-
pacity region of the degraded Gaussian MIMO multi-receiver
wiretap channel®. Contrary to the non-degraded multi-receiver
wiretap channel, the secrecy capacity region of the degraded

7The secrecy capacity region of the Gaussian MIMO multi-receiver wiretap
channel for an arbitrary number of legitimate users, i.e., for more than two legit-
imnate users, can be found in [8] and {9].

8The secrecy capacity region of the degraded Gaussian MIMO multi-receiver
wiretap channel for K = 2 was independently and concurrently obtained in
[338].



424 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 12, NO. 5, OCTOBER 2010

‘channel is known due to Corollary 11. Thus, to obtain the se-
crecy capacity region of the degraded Gaussian MIMO multi-
receiver wiretap channel, one needs to find the optimal random
vector (U, X) that exhausts the region given in Corollary 11.
References [8] and [9] achieve this task by showing that jointly
Gaussian (U, X) is sufficient to evaluate the region in Corol-
lary 11. This task is accomplished by using the de Bruijn iden-
tity [39], [40], a connection between the Fisher information ma-
trix and the differential entropy, and the properties of the Fisher
information matrix. In particular, using these tools, [8] and [9]
show that for any non-Gaussian (U, X), there exists a jointly
Gaussian (UY, XF) which provides higher secrecy rates than
the ones that any non-Gaussian (U, X) can provide.

The second step of the converse proof consists of lifting the
capacity result for the degraded Gaussian MIMO channel to the
general, i.e., non-degraded, Gaussian MIMO channel by using
channel enhancement [10]. In this step, [8] and [9] consider a
non-degraded Gaussian MIMO multi-receiver wiretap channel
and examines the boundary of the achievable region given in
Theorem 13 for this non-degraded channel. Next, [8] and [9]
pick an arbitrary point on the boundary of the achievable region
in Theorem 13. For this arbitrary point, a new degraded Gaus-
sian MIMO multi-receiver wiretap channel is constructed by us-
ing channel enhancement [10], such that the secrecy capacity re-
gion of the new degraded channel includes the secrecy capacity
of the original non-degraded channel. Thus, the secrecy capacity
region of the new degraded channel, which is known due to the
first step of the converse proof, serves as an outer bound for the
secrecy capacity region of the original non-degraded channel.
Finally, [8] and [9] show that the point picked on the bound-
ary of the achievable region in Theorem 13, from which the
new degraded channel was constructed, is also on the bound-
ary of the secrecy capacity region of the new degraded channel.
Since the secrecy capacity region of the new degraded channel
is an outer bound for the secrecy capacity region of the original
non-degraded channel, the point picked on the boundary. of the
achievable region in Theorem 13 should be on the boundary of
the secrecy capacity region of the original non-degraded chan-
nel. This argument finalizes the converse proof in [8] and [9].

Next, as we previously show the partial tightness of the in-
ner bound in Theorem 10 for the degraded discrete memory-
less multi-receiver wiretap channel, we consider the degraded
Gaussian MIMO multi-receiver wiretap channel, and state the
partial tightness of the inner bound in Theorem 12 for the de-
graded Gaussian MIMO multi-receiver wiretap channel. To this
end, first we specialize the inner bound in Theorem 12 to the
degraded Gaussian MIMO multi-receiver wiretap channel®.

Corollary 12 ([33], [34]) An inner bound for the capacity re-
gion of the degraded Gaussian MIMO multi-receiver wiretap
channel is given by the union of rate tuples (Rp1, Rs1, Rp2, Rs2)

91ndeed, one case, where the specialization of the inner bound in Theorem 12
to the degraded Gaussian MIMO multi-receiver wiretap channel is tight, is
already stated in Theorem 13. In particular, since degraded Gaussian MIMO
multi-receiver channels constitute a sub-class of Gaussian MIMO multi-receiver
channels, Theorem 13 gives the secrecy capacity region of the degraded Gaus-
sian MIMO multi-receiver wiretap channel as well. Hence, the specialization of
the inner bound in Theorem 12 to the degraded Gaussian MIMO channel is tight
for the secrecy capacity region of the degraded Gaussian MIMO multi-receiver
wiretap channel.

satisfying
1 H,SHJ +1| 1 HzSH) +1
R32§—103_| z 2T+ | 1yog HzSH, 1| Z |,
2 ° [H,KH, +]1 [HzKH] +1]
(132)
|HSH] +1] |

R+ R <= lg lg|H1KH1T+I[

[H,KH] +1] 2

-5 log |[HzSH] +1|, (133)
1, |H2SHj] +1
22 L 134
Ry + Rp2 = 2 log |H2KH; -I-Il’ (134)

1, [HLSHI +1)

2
> Rsj+ Ry < 5 log = log [H;KHT +1]

2
= |H,KH] +1|
- l1og [Hz;KH, +1|, (135)
|[H,SH] + 1|
log 2L -1 H;KH, +1
;R”JFR”’—z LKA 1] 2 8 HKH A
(136)

where K is a positive semi-definite matrix satisfying K < S.

This inner bound can be obtained from Theorem 12°in two
steps. In the first step, only one of the two regions R12 and Ra;
needs to be considered, namely o1, which is given by the union
of rate tuples (Rp1, Rs1, Rp2, Rs2) satisfying

1, |HSH] +1I] 1. [HzSH] +1]
<zlogm2 . “log—_Z . (137
R < Glog i waT 1) 2 ¢ kAL +1 )
1 [H,SH] +1]
i e’ Hed 138
RsZ + Rp O |H2KHT " Ii ( )
1
Rq < %log |[H,KH] +1| - 5 log [HZzKH] +1|,
(139)
1
Roi+ Rp1 < log |H; KH] +1 (140)

where K is a positive semi-definite matrix satisfying K < S. We

set K; + K5 = S and K; = K in the original Ro; to obtain the

region given by (137)—(140). The second step involves showing

the equivalence between the two regions given in (133)-(136)

and (137)—(140), respectively. This step can be done by us-

ing Fourier-Moztkin elimination for the region in (137)-(140)

in conjunction with the following facts. ’

» Since confidential messages can be considered as public mes-
sages as well, each legitimate user’s confidential message
rate R,; can be given up in the favor of its public mes-
sage rate Rp;, ie., if (Rp1, Rs1, Rp2, Rs2) is achievable,
(Rp1 + a1, Rs1 — a1, Rpg + a2, Re2 — a2) is also achievable
for all non-negative (¢, cv2) pairs satisfying a; < Rg;.

o Since the channel is degraded, the second legitimate user’s
confidential message rate Rg2 can be given up in the favor
of the first legitimate user’s public and confidential message
rates Rp1 and R,1, ie., if (Rp1, Rs1, Rp2, Rs2) is achievable,
(Rp1 + &, Rs1 + B, Rp2, Rs2 — o — [3) is also achievable for
all non-negative (a, 3) pairs satisfying & + 8 < Rgo.
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o Since the channel is degraded, the second legitimate user’s
public message rate R,y can be given up in the favor of
the first legitimate user’s public message rate Ry, i.e., if
(Rpl, R, sz, ng) is achievable, (Rpl + a, Rs1, sz -
@, Rgy) is also achievable for any non-negative « satisfying
o< RPQ.

Besides obtaining the achievable rate region in Corollary 12
from Theorem 12, an alternative derivation can be provided
by using Corollary 8, where an achievable rate region is given
for the degraded multi-receiver wiretap channel. This alterna-
tive derivation corresponds to the evaluation of the achievable
rate region in Corollary 8 for the degraded Gaussian MIMO
multi-receiver wiretap channel by using the following selection
of U and X: i) U is a zero-mean Gaussian random vector with
covariance matrix S—K and ii) X = I/ 4+-U’ where U’ is a zero-
mean Gaussian random vector with covariance matrix K, and
is independent of U. We note that besides this jointly Gaussian
(U, X) selection, there might be other possible (U, X) selections
which may yield a larger region than the one obtained by using
jointly Gaussian (U, X). However, it is shown in [33] and [34]
that jointly Gaussian (U, X) selection is sufficient to evaluate
the achievable rate region in Corollary 8 for the degraded Gaus-
sian MIMO wiretap channel. In other words, jointly Gaussian
(U, X) selection exhausts the achievable rate region in Corol-
lary 8 for the degraded Gaussian MIMO multi-receiver wiretap
channel. This sufficiency result is stated in the following theo-
rem.

Theorem 14 ([33], [34]) For the degraded Gaussian multi-
receiver wiretap channel, the achievable rate region in Corol-
lary 8 is exhausted by jointly Gaussian (U, X). In particular,
for any non-Gaussian (U, X), there exists a Gaussian (U%, X%)
which yields a larger region than the one obtained by using the
non-Gaussian (U, X).

Next, we provide an outer bound for the capacity region of the
degraded Gaussian MIMO multi-receiver wiretap channel. This
outer bound can be obtained by evaluating the outer bound given
in Theorem 11 for the degraded Gaussian MIMO multi-receiver
wiretap channel. This evaluation is tantamount to find the op-
timal (U, X) which exhausts the outer bound in Theorem 11
for the degraded Gaussian MIMO multi-receiver wiretap chan-
nel. In [33] and [34], it is shown that jointly Gaussian (U, X) is
sufficient to exhaust the outer bound in Theorem 11. The corre-
sponding outer bound is stated in the following theorem.

Theorem 15 ([33], [34]) The capacity region of the degraded
Gaussian MIMO multi-receiver wiretap channel is contained in
the union of rate tuples (R, Rq1, Rp2, Re2) satisfying

Ro< Ll [HoSHY +1] 1. |[HzSHJ +1]
2= S HKE] +1] 2 °|H KH, +1)
(141)

[H,SH; +1] T

Ra + R < —————+—log | H1KH, +1

1+ Rs2 < ‘HQKHT+II+ g [Hy +1]
—= log |HzSHJ +1, (142)

T

Re2+ Rpz < = log L@Sﬂ.ﬂ (143)

tHQKHT +1)
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‘HQSH +1

>Ry iy < S

=1

+3 log |H,KH] + 1| (144)
where K is a positive semi-definite matrix satisfying K < S.
‘We note that the only difference between the inner and the
outer bounds for the degraded Gaussian MIMO multi-receiver
wiretap given in Corollary 12 and Theorem 15, respectively,
comes from the bound in (135). In other words, there is one
more constraint in the inner bound given by Corollary 12 than
the outer bound given by Theorem 15. This additional constraint
is
|H,SH] +1|

1
o1 + Hs < zlog o —;
Rav + Rea + Fipz < g 08 1 prp )

1
+ 5 log |H;KH] +1]

- —;—log [HzKH] +1]. (145)
Besides this constraint on Ry + Rea+ Ry, both the inner bound
in Corollary 12 and the outer bound in Theorem 15 are the same.

We conclude this section by providing the cases where the in-
ner bound in Corollary 12 and the outer bound in Theorem 15
match. Indeed, one such case is already presented in Theo-
rem 13, which provides the secrecy capacity region of the gen-
eral, not necessarily degraded, Gaussian MIMO multi-receiver
wiretap channel. Thus, the inner bound in Corollary 12 and the
outer bound in Theorem 15 match on the secrecy capacity re-
gion of the degraded Gaussian MIMO multi-receiver wiretap
channel. Next, we present two other cases where these inner and
outer bounds match. The first scenario where the inner bound in

. Corollary 12 and the outer bound in Theorem 15 match can be

obtained by setting the confidential message rate of the first le-
gitimate user to zero, i.e.; Rs1 = 0. The corresponding capacity
region is given by the following corollary.

Corollary 13 ([33], [34]) The capacity region of the de-
graded Gaussian MIMO multi-receiver wiretap channel without
the first legitimate user’s confidential message rate is given by
the union of rate tuples (Rp1, Rp2, Re2) satisfying

— %log %}I—;—‘ZZIS(II_II—%{—%, (146)

Ry +Rp < %log ‘1}1—;122—184}%——1%, (147)
R32+j§i:11?,pj§%lo W “log |H;KH/ +1]
(148)

where K is a positive semi-definite matrix satisfying K < S.
We note that Corollary 13 is the Gaussian MIMO version of
Corollary 9 which obtains the capacity region of the degraded
discrete memoryless multi-receiver wiretap channel without the
first legitimate user’s confidential message. Corollary 13 can be
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proved by setting Ry = 0 in both Corollary 12 and Theorem 15
and eliminating the redundant bounds.

The last scenario where the inner bound in Corollary 12 and
the outer bound in Theorem 15 match can be obtained by setting
the public message rate of the second legitimate user to zero,
i.e., Rpa = 0. The corresponding capacity region is stated in the
following corollary.

Corollary 14 ([33], [34]) The capacity region of the de-
graded Gaussian MIMO multi-receiver wiretap channel with-
out the second legitimate user’s public message is given by the
union of rate tuples (Rp1, Rs1, Rs2) satisfying

1. [HoSH) +1|
S |H.KH] +1]
1. |HzSH] +1]
— gl T
H,KH), +1
§H28H2 +1]
310 [HoKH] + 1|

-3 log }HZSHZ +1],

Rs2§ 5

(149)

Re1 + Rgy < <1 -1 og |[H;KH, +1]

(150)

2 1
Zst + Ry < 3 log
=1

[HoSH + 1
HKH,] +]1]
1
+ 5 log H:KH{ +1] (151)
where K is a positive semi-definite matrix satisfying K < S.
We note that Corollary 14 is the Gaussian MIMO version of
Corollary 10 which obtains the capacity region of the degraded
discrete memoryless multi-receiver wiretap channel without the
second legitimate user’s public message. Corollary 14 can be

proved by setting R = 0 in both Corollary 12 and Theorem 15
and eliminating the redundant bounds.

V. COMPOUND WIRETAP CHANNELS

Similar to the previous sections, here also we first consider
the discrete memoryless compound wiretap channel. We start
with the following achievable secrecy rate for the discrete mem-
oryless compound wiretap channel.

Theorem 16 ({5]) For the discrete memoryless compound
wiretap channel, the following secrecy rate is achievable

max Iﬁg}I(V; Y;) -

I(V; Z) (152)

where the maximization is over all {V, X) which satisfy the fol-
lowing Markov chain

VXY, 7 (153)
for any (4, k) pair.

This achievable secrecy rate can be seen as the generaliza-
tion of Csiszar-Korner’s achievable secrecy rate for the broad-
cast channel with only one confidential message [2] to the com-
pound setting. If we fix a (7, k) pair, due to [2], the following

I(V;Y;)

- I(V; Zy) (154)
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is an achievable secrecy rate. Thus, following their footsteps,
one expects to achieve the secrecy rate given in Theorem 16 be-
cause, intuitively, the secrecy rate in Theorem 16 considers the
worst (4, k) pair by taking a minimization of (154) overall (j, k)
pairs. Although this explanation seems to be intuitively correct,
there is a subtlety which arises from the fact that there needs to
exist a single codebook which needs to achieve a certain fixed
secrecy rate in all of the underlying wiretap channels associated
with the compound wiretap channel. In other words, if there is a
codebook which provides the secrecy rate in (154) in the wire-
tap channel indexed by (4, k), this codebook might not achieve
the following secrecy rate

I(V;Yy) = I(V; Zi) (155)
in the wiretap channel indexed by (j', &’). Thus, this intuitive
argument is not technically correct. To show the existence of
a codebook which provides the secrecy rate in (152) in all of
the underlying wiretap channels associated with the compound
wiretap channel is the key part of the proof of Theorem 16. To
show the existence of such a codebook, random binning and
channel pre-fixing are used. First, the achievability of the fol-
lowing secrecy rate ,
I(X; Zy)

max min I(X;Y;) — (156)

3

is shown. To this end, a codebook of size 2(F+5) is gener-
ated by using X. The codewords in this codebook have double
indices, where one index, with rate R, carries the confidential
message, and the other index, with rate R, has no information
content, and has the sole purpose of providing the necessary pro-
tection for the confidential part. Until now, the codebook gen-
eration is identical to the one in Csisar-Korner [2]. The differ-
ence of the codebook in [5] from the one in [2] comes from
the adjustment of the rates R and R. Since R is the dummy
index sent to protect the confidential message, it needs to be
set according the best eavesdropper, namely its rate should be
maxy I(X; Zy). Since all legitimate users needs to decode the
codewors, the total rate R + R needs to be adjusted according
to the worst legitimate user, namely the total rate R + R needs
to be min; I(X;Y}). These selections ensure both the reliabil-
ity and the security of the confidential messages yielding (156)
as an achievable secrecy rate. Finally, the achievability of the
secrecy rate in Theorem 16 is concluded by the use of channel
pre-fixing [2].

The lower bound in Theorem 16 is not tight in general, as it
was shown in [41]. In [41], the compound wiretap channel with
two legitimate users and one eavesdropper, i.e., Ky = 2 and
Kz = 1, is considered, and the following achievable secrecy
rate is provided.

Theorem 17 ([41]) The secrecy capacity of the two-user
one-eavesdropper discrete memoryless compound wiretap chan-
nel is lower bounded by the maximum of R satisfying

R < I(Vo, Vo; Yo) — I(Vo, Va; Z) (158)
for some (Vp,V1,V2) such that (Vp,V1,12) — X —
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(Y1,Y5,7), and

I(V1, Vo; Z Vo) + I(Vi; ValVa) < I(Vi; Z\Vo) + I(Vas; Z| V).
(159)

This achievable secrecy rate is obtained by using indirect de-
coding [42] and Marton’s coding [13]. First, a codebook of size
on(R+R) jg generated by using Vj, and next for each V', a code-
book of size 2™ is generated by using Vi, 7 = 1,2, where
V" and V3* are encoded by Marton’s coding. Here, R denotes
the rate of the confidential messages, and fZ, 1;31, and Rg de-
note the rates of the dummy messages whose sole purpose is
to protect the confidential messages. The jth legitimate user es-
timates the transmitted confidential message by jointly decod-
ing V', and V™. Thus, here the same confidential message
is transmitted to each legitimate user by different codewords,
as opposed to the transmission by a single codeword in Theo-
rem 16. This approach turns out to be more useful in the sense
that it provides higher secrecy rates than Theorem 16 can pro-
vide because of the more randomness injected to the channel.
In particular, in [41], an example is provided to show that the
achievable secrecy rate given in Theorem 17 is strictly larger
than the achievable secrecy rate given in Theorem 16. Thus, the
lower bound in Theorem 16 is not the secrecy capacity of the
compound wiretap channel.

In [43], a new achievable secrecy rate for the two-user one-
eavesdropper compound wiretap channel is provided, and it is
shown that this achievable secrecy rate is potentially better than
the achievable secrecy rate in Theorem 17. This potentially bet-
ter achievable scheme in [43] is similar to the achievable scheme
given in Theorem 17 in terms of the techniques used. In par-
ticular, the achievable scheme in [43] also uses indirect decod-
ing [42] and Marton’s coding [13]. The only new ingredient in
this potentially better achievable scheme, as compared to the
achievable scheme in Theorem 17, is the computation of the
equivocation rate, i.e., the method [43] uses to show that the
perfect secrecy requirement on the confidential message given
by (18) is satisfied. In particular, while computing the equivo-
cation rate in the proof of Theorem 17, one needs to show the
following

lim
[ de )

%H(%”,VQ”IW, Vol ™) = 0. (160)

Reference [41] shows that (160) is satisfied by using the follow-
ing bound

1
CH(VR VW VS, 27 < SH(VTW, VG, 27)
n

1
+ ZH( W, V3,27 (16D

which might result in potential suboptimality in the achievable
secrecy rate given in Theorem 17 as compared to the achiev-
able secrecy rate that can be obtained by directly showing (160)
without any recourse to the bound in (161). The corresponding
new achievable secrecy rate, obtained by showing (160) without
using the bound in (161), is given in the following theorem.

Theorem 18 ([43]) The secrecy capacity of the two-user
one-eavesdropper discrete memoryless compound wiretap chan-
nel is lower bounded by the maximum of R satisfying

R <I(Vo,Vis1h) — I(Vo, V13 Z), (162)

427

2R < I(Vo, Vi; Y1) + I(Vo, Va3 Yo) — 21(Vo; Z)
— I(V1, Va; Z|Vh) — I(V1; Va|Vh) (164)
for some (Vp,Vi,V2) such that (Vp,V1,V2) — X —

(11, Y2, 2).

We note that the achievable secrecy rate given in Theorem 18
has one more rate constraint than the achievable secrecy rate
given in Theorem 17, while both achievable secrecy rates have
two rate constraints (162)~(163) in common. On the other hand,
the new achievable secrecy rate in Theorem 18 does not have
the constraint in (159) that Theorem 17 has. In [43], it is shown
that any secrecy rate achievable by Theorem 17 is also achiev-
able by Theorem 18, and there might be achievable secrecy rates
which can be achieved by Theorem 18 and cannot be achieved
by Theorem 17, because of the constraint in (159).

Next, we provide the existing outer bounds for the compound
wiretap channel. The first outer bound can be obtained by not-
ing the facts that there are K'y x Kz wiretap channels associated
with a compound wiretap channel with Ky legitimate users and
Kz eavesdroppers, and the secrecy capacity of the compound
wiretap channel cannot be larger than the minimum of the se-
crecy capacities of these Ky x Kz wiretap channels. This ar-
gument leads to the following outer bound.

Theorem 19 ([5]) The secrecy capacity of the compound
wiretap channel is upper bounded by

min max I(V;Y;) = 1(V; Zy) (165)
s

where the maximization is overall (V, X) satisfying V' — X —
Y}, Zg, V{4, k). In other words, the secrecy capacity of the com-
pound wiretap channel is upper bounded by the minimum of the
secrecy capacities of all underlying wiretap channels associated
with the compound wiretap channel.

In general, it is not expected that the outer bound in Theo-
rem 19 is equal to the secrecy capacity of the compound wiretap
channel because of the fact that if a certain (V, X) achieves the
secrecy capacity of the (j, k)th wiretap channel in the compound
channel, it might not achieve the secrecy capacities of all other
wiretap channels associated with the compound wiretap chan-
nel. In other words, if a codebook attains the secrecy capacity of
the (4, k)th wiretap channel in the compound channel, the same
codebook might not perform in the other wiretap channels asso-
ciated with the compound wiretap channel as well as it performs
in the (7, k)th wiretap channel, i.e., it might not simultaneously
achieve the secrecy capacities of all of the underlying wiretap
channels in the compound wiretap channel.

Next, we present another outer bound for the secrecy capacity
of the compound wiretap channel.

Theorem 20 ([44]) The secrecy capacity of the compound
wiretap channel is upper bounded by

max min I(X;Y;|Zx)

ni (166)

where the maximization is over all X.

This outer bound considers the (J, k)th wiretap channel in the
compound channel, and enhances this wiretap channel by pro-
viding the eavesdropper’s observation to the legitimate user. For
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a fixed input distribution on X, the achievable secrecy rate is
shown to be upper bounded by I(X;Y;|Z;) for this (j,k)th
wiretap channel. Finally, taking the minimum of I(X;Y;|Zy)
over all possible (4, k) pairs leads to an upper bound for the se-
crecy capacity of the compound wiretap channel, as stated in
Theorem 20.

Although the secrecy capacity of the compound wiretap chan-
nel is unknown in general, there are special instances of the com-
pound wiretap channel, for which the secrecy capacity is known.
" The first instance is the degraded compound wiretap channel,
The secrecy capacity of the degraded compound wiretap chan-
nel is stated in the following theorem.

Theorem 21 ([5]) The secrecy capacity of the degraded
compound wiretap channel is given by

max min 1(X; ;) ~ I(X; Z)
Js

(167)

where the maximization is over all X.

The achievability of the secrecy rate in Theorem 21 can be
shown by setting V' = X in Theorem 16. The converse proof
for Theorem 21 follows from Theorem 20 by noting the Markov
chain X — Y; — Z, V(j, k). The second instance of the
compound wiretap channel, for which the secrecy capacity is
known, is a special class of parallel compound wiretap chan-
nels with Kz = 1. In this special compound wiretap channel,
there is only one eavesdropper, and an arbitrary number of legit-
imate users, where the channel between the transmitter and the
receivers constitute [, independent parallel channels. In other
words, the channel transition probability is given by

p ({ylﬂv YKy zﬂ}lel{xl}é;:l)
L

=[Ip @i,y e zelze)  (168)
=1

where ;¢ is the channel input of the /th parallel channel, y;,
is the channel output of the fth parallel channel at the jth le-
gitimate user, and 2z, is the channel output of the f(th parallel
channel at the eavesdropper. This special class of parallel com-
pound wiretap channels exhibits a certain degradation order in
each parallel channel as follows

X =Yy —Zpg— Y

.?Kyl’

£=1,.-,L (169)

where j1, j2, -, jK, is a permutationof 1, - - -, Ky, and can be
different in each parallel channel. This special class of paral-
lel compound wiretap channels is called the reversely degraded
parallel compound wiretap channel {45], for which the secrecy
capacity is stated in the following theorem.

Theorem 22 ([45]) The secrecy capacity of the reversely de-
graded parallel compound wiretap channel is given by

L
max min Y I(X; Yie|Ze)
=1

(170)

where the maximization is over all input distributions of the
form:p(a?h . ‘:31}5) = H§=1 P(mf)-

The achievability of this secrecy rate can be shown by us-
ing the codebook in [45], where this codebook consists of L
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independent sub-codebooks, each of which is used for a parallel
channel. The size of the £th codebook is 2B+ (Xe:2) | where
the rate I(Xy; Z,) is the rate of the dummy messages sent to
protect the confidential message, and R is the rate of the confi-
dential message. Thus, the rate of the confidential messages is
not split into L sub-rates, instead, the entire confidential mes-
sage is sent over each parallel channel. The converse proof of
Theorem 22 can be obtained by specializing the outer bound in
Theorem 20 to the reversely degraded parallel compound wire-
tap channel.

A. Gaussian Compound Wiretap Channels

Here, we investigate the Gaussian compound wiretap chan-
nel. First we start with the Gaussian parallel compound wiretap
channel which can be defined as'®

Yje = h}pXe + Ny,
Zg = b2 Xy + Nie,

j=1,Ky
k=1, Kz

(171)
(172)

where £ = 1,-.., L denotes the index of the parallel channel,
and Ny and Ny, are the zero-mean unit-variance Gaussian ran-
dom variables, and are independent across the parallel channels.
The channel input is subject to a power constraint as follows

L
M E[X;]<P (173)
£=1

The secrecy capacity of the Gaussian parailel compound wiretap
channel is unknown in general. However, the secrecy capacity
is known when i) Ky = 1 and K is arbitrary and ii) Ky is
arbitrary and Kz = 1. The secrecy capacity of the case Ky =1
and Kz is arbitrary is stated in the following theorem.

Theorem 23 ([44]) The secrecy capacity of the Gaussian
parallel compound wiretap channel with Ky = 1 and arbitrary
Kz is given by

maxmlgn % XL: [log (1 + (hz’)z Pe) —log (1 + (hfe)z Pe)} +
(174)

£=]

where the maximization is over all non-negative Py, -- -, Pr, sat-
isfying Zle P, =P

The achievability of this theorem is shown by adapting the
achievable scheme proposed in {46] for the wiretap II channel to
the Gaussian parallel compound wiretap channel with Ky = 1
and arbitrary K. The converse proof can be shown by using
the outer bound in Theorem 20.

Next, we consider the Gaussian parallel compound wiretap
channel with Kz = 1 and arbitrary Ky. Indeed, this Gaus-
sian parallel compound wiretap channel is an instance of the
reversely degraded compound wiretap channel for which the se-
crecy capacity is known in a single-letter form as stated in The-
orem 22. Evaluation of this single-letter expression provides us

10The Gaussian parallel compound wiretap channel corresponds to a special
case of the Gaussian MIMO compound wiretap channel. The parallel channel
can be obtained from the Gaussian MIMO channel by taking all channel gain
matrices HY and HZ as L x L diagonal matrices.
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the secrecy capacity of the Gaussian parallel compound wiretap
channel with Kz = 1 and arbitrary Ky as follows.

Theorem 24 ([45]) The secrecy capacity of the Gaussian
parallel compound wiretap channel with Kz = 1 and arbitrary
Ky is given by

L
. 1 Y12 z 2 +
maxmjm 3 ; [Iog (1 + (hjé) Pe) — log (1 + (he ) Pg)]
(175)
where the maximization is over all non-negative P\, - - -, Py, sat-

isfying ", Pr = P,

Next, we consider the Gaussian MIMO compound wiretap
channel. We note that the secrecy capacity of the general, not
necessarily degraded, Gaussian MIMO compound wiretap chan-
nel is unknown. However, the secrecy capacity of the degraded
Gaussian MIMO compound wiretap channel is known as stated
in the following theorem.

Theorem 25 ([5]) The secrecy capacity of the degraded
Gaussian MIMO compound wiretap channel is given by

rmnlmgHYmHYﬁ+¢y-lmmﬂfaﬂff+4y
ik 2 7 J 2
{176)

We note that due to Theorem 21, the single-letter form of the
secrecy capacity of the degraded compound wiretap channel is
known. To obtain the secrecy capacity of the degraded Gaussian
MIMO compound wiretap channel, one needs to find the op-
timal input distribution for X that attains the maximum for the
single-letter formula given in Theorem 21. This is accomplished
in [5] by showing that Gaussian X with covariance matrix S is
the maximizer for this single-letter formula.

As we noted before, the secrecy capacity of the general, non-
degraded, Gaussian MIMO compound wiretap channel is un-
known in general. However, using either Theorem 16 or The-
orem 18, lower bounds for the secrecy capacity of the general
Gaussian MIMO compound wiretap channel can be provided.
In particular, using Theorem 16, the following lower bound is
provided in [5].

Theorem 26 ([5]) A lower bound for the secrecy capacity of
the general Gaussian MIMO compound wiretap channel is given
by

1
max mikn 5 log }H;K(H?)T +1] - % log H/KHZ)" +1
4,
a77)

where the maximization is over all positive semi-definite matri-
ces K satisfying K < S.

This lower bound can be obtained from Theorem 16 by set-
ting V = X, and selecting X as a zero-mean Gaussian ran-
dom vector with covariance matrix K. The lower bound in The-
orem 26 is further investigated in [5] to obtain some achievable
secure degrees of freedom!!. In particular, [5] proposes a lin-
ear beamforming scheme which corresponds to a special selec-
tion of the covariance matrix K in Theorem 26, and obtains the

11 A secure degrees of freedom d is said to be achievable if there is an achiev-

able secrecy rate R such that d = limp_, oo Tlf?' Thus, the secure degrees
K

of freedom represents the scaling of the secrecy rate with % log Pas P — oc.
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corresponding secure degrees of freedom. A similar approach
is also taken in [47], where the general Gaussian multi-input
single output (MISO) compound wiretap channel, i.e., the trans-
mitter has multiple antennas whereas the legitimate users and
the eavesdroppers have single antenna each, is studied. Refer-
ence [47] considers the lower bound in Theorem 16 and eval-
uates it by using interference alignment, i.e., V and X are se-
lected according to an interference alignment scheme {48], [49].
Similar to [5], [47] also focuses on the achievable secure de-
grees of freedom. In particular, [47] obtains an achievable se-
cure degrees of freedom corresponding to the evaluation of the
inner bound in Theorem 16 by using an interference alignment
scheme [48], [49]. Moreover, [47] proposes outer bounds for
the general Gaussian MISO compound wiretap channel, and ob-
tains the maximum achievable secure degrees of freedom under
certain cases which are determined by the number of transmit-
ter antennas, the number of legitimate users, and the number of
eavesdroppers.

Another lower bound for the secrecy capacity of the gen-
eral Gaussian MIMO compound wiretap channel with two le-
gitimate users and one eavesdropper can be obtained by using
Theorem 18 as follows.

Theorem 27 ([43]) The secrecy capacity of the two-user
one-eavesdropper Gaussian MIMO compound wiretap channel

is lower bounded by the maximum of R satisfying
R = max {RY (Ko, K1,K»), RF (Ko, K1, K2)}  (178)

for some positive semi-definite matrices Ko, Ky, and K such
that Ko + K; + Kz < S, and R} (Ko, K1, Ko) is given by

RE (Ko, Ky, Ka) = min R& (Ko, Ky, Ka) (179)
j=1,
where R32 (Ko, K1,K3) and R (Ko, K1, K3) are
1 |K0+K1+K2+21{
12 _ 1
RSI(K(MK})KQ) - 9 IOg |K2 + Zl|
_ 110 §K0+K1-{-K2 —i—EzI
2 & |K2 + 2Z| ’
(180)
1, Ko+ K+ Ky + 24
12 _1
RS2(K07 Kla K?) 2 lOg ;Kl + K2 n 22|
B llo 1K0+K1 + Ky +Zzi
2% K+ Kp 1 37
1, |[Ke+3g 1 Ko + X5
bolog et el 1y 1Rt 2
2 B TIm 2% |3
(181)

We note that R%(Ko,Ki,Kz) can be obtained from
RY¥ (Ko, K1, Ky) by swapping the indices 1 and 2.

This lower bound can be obtained from Theorem 18 in two
steps. In the first step, Theorem 18 is used to show the achiev-
ability of the following rate

R =max {R¢, RY' }

for some (Vo,Vi,Va) such that (Vp,Vy,Va)
(Y1,Y2, Z), and RY and R%! are given by

R = min{I(Vo, V1; Y1) — I(Vo, V1; Z),

(182)

- X =
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I(Vo, V23 Ya) — I(Vo; Z) — I(Vo; Z, V1| Vo)), (183)
I(Vo, Va; Ya) — I(Vo, Va; Z)}. (184)

In the second step, the achievable secrecy rate given by
(182)—(184) is evaluated for the Gaussian MIMO compound
wiretap channel by using a jointly Gaussian selection of
Vo, V1, and V, with a specific correlation structure. In partic-
ular, Vj is selected as a zero-mean Gaussian random vector with
covariance matrix Ky, and V; and V5 are encoded by using
DPC. Reference [43] further studies the lower bound in The-
orem 27 and shows that it achieves at least half of the minimum
of secrecy capacities of the underlying two Gaussian MIMO
wiretap channels in the two-user one-eavesdropper Gaussian
MIMO compound wiretap channel. Moreover, [43] obtains the
secrecy capacity of a class of two-user one-eavesdropper Gaus-
sian MIMO compound wiretap channels, where for the channels
in this class, the eavesdropper is degraded with respect to one of
the two legitimate users, and there is no degradedness relation-
ship between the eavesdropper and the other legitimate user.

B. Compound Wiretap Channels with Multiple Confidential
Messages

Until now, we considered compound wiretap channels for the
scenario where there is only one confidential message that needs
to be transmitted both reliably and securely. In this section, we
consider a more general scenario where there are more than one
group of legitimate users, and the transmitter multicasts a dif-
ferent confidential message to each group of legitimate users. In
the literature, there are two models which consider the multi-
cast of more than one confidential message: i) The compound
broadcast channel with confidential messages [47], [50] and ii)
the compound multi-receiver wiretap channel {51], [52].

In the compound broadcast channel with confidential mes-
sages, there is a transmitter and two groups of users, where each
group treats the other group as a collection of eavesdroppers. In
this model, the transmitter sends a confidential message to each
group of users, and this message needs to be kept perfectly secret
from the other group of users. This channel model is investigated
in [47] and [50]. Reference [50] first considers the discrete mem-
oryless compound broadcast channels and proposes an achiev-
able secrecy rate region by extending the achievable secrecy rate
region given in Theorem 1 to the compound setting. Next, [50]
studies the Gaussian MIMO compound broadcast channel and
obtains an achievable secure degrees of freedom region by eval-
uating their achievable secrecy rate region, the one proposed
for the discrete memoryless channel, for the Gaussian MIMO
channel with a linear beamforming scheme. Reference [47] con-
siders the Gaussian MISO compound channel with confidential
messages, i.e., the transmitter has multiple antennas whereas
all receivers are equipped with a single antenna each, for the
sum secrecy rate. Reference [47] evaluates the achievable sum
secrecy, that can be obtained from the achievable scheme pro-
posed in [50] for the discrete memoryless channel, using an in-
terference alignment scheme [48], [49], and obtains the achiev-
able secure degrees of freedom for the sum secrecy rate. More-
over, [47] proposes outer bounds for the secure degrees of free-
dom of the sum secrecy rate.

In the compound multi-receiver wiretap channel, there are
a transmitter, two groups of legitimate users and a group of -
eavesdroppers. References [51] and [52] consider the degraded
compound multi-receiver wiretap channel, where the legitimate
users in the second (weaker) group are degraded with respect to
the legitimate users in the first (stronger) group, and eavesdrop-
pers are degraded with respect to the legitimate users in the sec-
ond group. References [51] and [52] study this degraded channel
under two scenarios. In the first scenario, the transmitter sends
a confidential message to each group of legitimate users where
these messages need to be kept perfectly hidden from all eaves-
droppers. In the second scenario, the transmitter again sends a
confidential message to each group of legitimate users, where
the message of the stronger group needs to be kept perfectly
hidden from the weaker group in addition to all eavesdroppers,
and the message of the weaker group needs to be kept perfectly
secret from all eavesdroppers. References [51] and [52] obtain
the secrecy capacity regions corresponding to both scenarios for
both the discrete memoryless and the Gaussian MIMO channel
under certain conditions on the number of users in each group
and on the number of eavesdroppers.

VI. CONCLUSIONS

In this paper, we provided a survey of the literature for
three forms of secure broadcasting problems, namely the broad-
cast channels with common and confidential messages, multi-
receiver wiretap channels, and compound wiretap channels, by
focusing on the Gaussian MIMO channel models more closely.
We also considered the discrete memoryless channel models
for these three secure broadcasting problems, as the discrete
memoryless models often serve as intermediate steps to obtain
information-theoretic results for the Gaussian MIMO channel
models. We provided and explained the current capacity results,
existing inner and outer bounds for these three forms of secure
broadcasting problems. We described the main information-
theoretic tools and approaches used to obtain these results with
pointers to the works where these tools and approaches were
originally devised.

REFERENCES

[1] A. Wyner, “The wire-tap channel,” Bell Syst. Technical J., vol. 54, no. 8,
pp. 1355-1387, Jan. 1975.

[2]1 I Csiszar and J. Korner, “Broadcast channels with confidential messages,”
IEEE Trans. Inf. Theory, vol. 24, no. 3, pp. 339-348, May 1978.

[3]1 Y. Liang, H. V. Poor, and S. Shamai (Shitz), “Information theoretic secu-
rity,” Foundations and Trends in Commun. Inf. Theory, vol. 5, no. 4-5, pp.
355-380, 2008.

[4] Y. Liang, H. V. Poor, and S. Shamai (Shitz), “Physical layer security in
broadcast networks,” Security and Commun. Netw., vol. 2, no. 3, pp. 227—
238, May/June 2009.

[5] Y. Liang, G. Kramer, H. V. Poor, and S. Shamai (Shitz), “Compound
wire-tap channels,” EURASIP J. Wireless Commun. Netw. (Special Issue
on Wireless Physical Layer Security), 2009.

[6] S.K.L.-Y.Cheong, and M. E. Hellman, “The Gaussian wire-tap channel,”
IEEE Trans. Inf. Theory, vol. 24, no. 4, pp. 451-456, July 1978.

[71 R.Liu, T.Liu, H. V. Poor, and S. Shamai (Shitz), “Multiple-input multiple-
output Gaussian broadcast channels with confidential messages,” IEEE
Trans. Inf. Theory, vol. 56, no. 9, pp. 4215-4227, Sept. 2010.

[8] E. Ekrem and S. Ulukus. The secrecy capacity region of the Gaussian
MIMO multi-receiver wiretap channel. Submitted to JEEE Trans. Inf. The-
ory. [Online]. Available: http://arXiv.org/abs/0903.3096



EKREM AND ULUKUS: SECURE BROADCASTING USING MULTIPLE ANTENNAS

(91
[10]

[11]

(121

(13]
(14]

(15}

[16]

[17]

(18]

[19]

[20]

{21}

[22]

[23]

243

[25]

[26]

[27)

(28]

29

(303

[31]

(32]

(331

[34]

(35}

[36]

E. Ekrem and S. Ulukus, “Gaussian MIMO multi-receiver wiretap chan-
nel,” in Proc. IEEE GLOBECOM, Nov. 2009.

H. Weingarten, Y. Steinberg, and S. Shamai (Shitz), “The capacity region
of the Gaussian multiple-input multiple-output broadcast channel,” JEEE
Trans. Inf. Theory, vol. 52, no. 9, pp. 3936-3964, Sept. 2006.

R. Liu, I. Maric, P. Spasojevic, and R. D. Yates, “Discrete memoryless
interference and broadcast channels with confidential messages: Secrecy
rate regions,” IEEE Trans. Inf. Theory, vol. 54, no. 6, pp. 2493-2507, June
2008.

J. Xu, Y. Cao, and B. Chen, “Capacity bounds for broadcast channels with
confidential messages,” IEEE Trans. Inf. Theory, vol. 55, no. 10, pp. 4529~
4542, Oct. 2009.

K. Marton, “A coding theorem for the discrete memoryless channels,”
IEEE Trans. Inf. Theory, vol. 25, no. 1, pp. 306-311, May 1979.

W. Yu and J. Cioffi, “Sum capacity of Gaussian vector broadcast channels,”
{EEE Trans. Inf. Theory, vol. 50, no. 9, pp. 1875-1892, Sept. 2004.

E. Ekrem and S. Ulukus. (2010, Apr.). Capacity-equivocation region of the
Gaussian MIMO wiretap channel. Submitted to IEEE Trans. Inf. Theory.
[Online]. Available: hutp:/arXiv.org/abs/1005.0419

E. Ekrem and §. Ulukus, “Transmission of common, public and confiden-
tial messages in broadcast channels with multiple antennas,” in Proc. IEEE
PIMRC, Sept. 2010.

E. Ekrem and S. Ulukus. (2010, Feb.). Capacity region of the Gaus-
sian MIMO broadcast channels with common and confidential mes-
sages. Submitted to IEEE Trans. Inf Theory. [Ounline]. Available:
http://arXiv.org/abs/1002.5026

E. Ekrem and S. Ulukus, “Gaussian MIMO broadcast channels with com-
mon and confidential messages,” in Proc. IEEE ISIT, June 2010.

R. Liu, T. Liu, H. V. Poor, and S. Shamai (Shitz), “MIMO Gaussian broad-
cast channels with confidential and common messages,” in Proc. IEEE
ISIT, June. 2010,

H. D. Ly, T. Lin, and Y. Liang. Multiple-input multiple-output Gaussian
broadcast channels with common and confidential messages. Submitted to
IEEE Trans. Inf. Theory. [Online]. Available: http:/farXiv.org/abs/(907.2
599

R. Liu, T. Liu, H. V. Poor, and S. Shamai (Shitz), “The capacity-equivo-
cation region of the MIMO Gaussian wiretap channel,” in Proc. IEEE ISIT,
June 2010.

T. Cover and J. Thomas, Elements of Information Theory. 2nd ed., Wiley
& Sons, 2006.

S. Shafiee, N. Liu, and S. Ulukus, “Towards the secrecy capacity of the
Gaussian MIMO wire-tap channel: The 2-2-1 channel,” IEEE Trans. Inf
Theory, vol. 55, no. 9, pp. 4033-4039, Sept. 2009.

A. Khisti and G. Wornell. Secure transmission with multiple antennas
I: The MIMO channel. Submitted to IEEE Trans. Inf. Theory. {Online].
Available: http://arXiv.org/abs/1006.5879

F. Oggier and B. Hassibi. (2007, Oct.). The secrecy capacity of the MIMO
wiretap channel. Submitted to IEEE Trans. Inf. Theory. [Online]. Avail-
able: http://arXiv.org/abs/0710.1920

T. Liu and S. Shamai (Shitz), “A note on the secrecy capacity of the multi-
antenna wiretap channel,” IEEE Trans. Inf. Theory, vol. 53, no. 6, pp.
2547-2553, June 2009.

H. Sato, “An outer bound to the capacity region of broadcast channels,”
IEEE Trans. Inf. Theory, vol. 24, no. 3, pp. 374-377, May 1978.

C. Paige and M. A. Saunders, “Towards a generalized singular value de-
composition,” SIAM. J. Numer. Anal., June 1981.

R. Bustin, R. Liu, H. V. Poor, and S. Shamai (Shitz}, “An MMSE approach
to the secrecy capacity of the MIMO Gaussian wiretap channel,” EURASIP
J. Wireless Commun. Netw. (Special Isssue on Wireless Physical Layer
Security), Dec. 2009.

H. Weingarten, Y. Steinberg, and S. Shamai (Shitz), “On the capacity re-
gion of the multi-antenna broadcast channel with common messages,” in
Proc. IEEE ISIT, July 2006.

H. Weingarten, Multiple-input multiple-output broadcast systems. Ph. D.
thesis, Technion, Haifa, Israel, 2007.

N. Jindal and A. Goldsmith, “Optimal power allocation for parallel broad-
cast channels with independent and common information,” in Proc. IEEE
ISIT, Tune 2004,

E. Ekrem and S. Ulukus, “Gaussian MIMO multi-receiver wiretap channel
with public and confidential messages,” In preparation.

E. Ekrem and S. Ulukus, “Degraded Gaussian MIMO multi-receiver wire-
tap channel with public and confidential messages,” in Proc. Allerton Conf.
Commun., Control, and Comput., Sept.—Oct. 2010.

G. Bagherikaram, A. S. Motahari, and A. K. Khandani, “The secrecy rate
region of the broadcast channel,” in Proc. Allerton Conf. Commun., Con-
trol, and Comput., Sept. 2008.

E. Ekrem and S. Ulukus, “Secrecy capacity of a class of broadcast chan-

371

[38]

391

(40}

[41]

[42}

[43]

[441

[45]

[46]

(47}

[48]

[49]

[50]

{54

{52}

431

nels with an eavesdropper,” EURASIP J. Wireless Commun. Netw. (Special
Isssue on Wireless Physical Layer Security), Dec. 2009.

E. Ekrem and S. Ulukus, “On secure broadcasting,” in Proc. Asilomar
Conf. Signais, Syst. Comp., Oct. 2008.

R. Liu, T. Liu, H. V. Poor, and S. Shamai (Shitz), “A vector generalization
of Costa’s entropy-power inequality with applications,” IEEE Trans. Inf.
Theory, vol. 56, no. 4, pp. 1865-1879, Apr. 2010.

N. M. Blachman, “The convolution inequality for entropy powers,” IFEE
Trans. Inf. Theory, vol. 11, no. 2, pp. 267-271, Apr. 1965.

D. P. Palomar and S. Verdu, “Gradient of mutual information in linear
vector Gaussian channels,” IEEE Trans. Inf. Theory, vol. 52, no. 1, pp.
141-154, Jan. 2006.

Y-K. Chia and A. El Gamal. (2010, Oct.). 3-receiver broadcast channels
with common and confidential messages. Submitted to IEEE Trans. Inf.
Theory, [Online]. Available: http://arXiv.org/abs/0910.1407

C. Nair and A. El Gamal, “The capacity region of a class of 3-receiver
broadcast channels with degraded message sets,” IEEE Trans. Inf. Theory,
vol. 55, no. 10, pp. 4479-4493, Oct. 2009.

E. Ekrem and S. Ulukus, “On Gaussian MIMO compound wiretap chan-
nels,” in Proc. CISS, Mar. 2010.

T. Liu, V. Prabhakaran, and S. Vishwanath, “The secrecy capacity of a
class of non-degraded parallel Gaussian compound wiretap channels,” in
Proc. IEEE ISIT, July 2008.

A. Khisti, A. Tchamkerten, and G. W. Wornell, “Secure broadcasting over
fading channels,” IEEE Trans. Inf. Theory, vol. 54, no. 6, pp. 2453-2469,
June 2008.

L. H. Ozarow and A. Wyner, “Wire-tap channel II,” in Proc. EUROCRYPT
84-A Workshop on the Theory and Application of Cryptographic Tech-
nigues: Advances in Cryptology, 1985.

A. Khisti. (2010, Feb.). Interference alignment for the multi-antenna com-
pound wiretap channel. Submitted to IEEE Trans. Inf. Theory. [Online].
Available: http://arXiv.org/abs/1002.4548

A. S. Motahari, S. O. Gharan, and A. K. Khandani. (2009, Aug.). Real
interference alignment with real numbers. Submitted to IEEE Trans. Inf.
Theory. [Online]. Available: http://arXiv.org/abs/0908.1208
A.S.Motahari, S. O. Gharan, M. Maddah-Ali, and A. K. Khandani. (2009,
Aug.). Real interference alignment: Exploiting the potential of single an-
tenna systems. Submitted to [EEE Trans. Inf. Theory. [Online]. Available:
http:/farXiv.org/abs/0908.2282

M. Kobayashi, Y. Liang, S. Shamai (Shitz), and M. Debbah, “On the com-
pound MIMO broadcast channels with confidential messages,” in Proc.
IEEE ISIT, June-July 2009.

E. Ekrem and S. Ulukus. (2009, Oct.). Degraded compound multi-receiver
wiretap channels. Submitted to /EEE Trans. Inf. Theory. [Online]. Avail-
able: hitp:/farXiv.org/abs/0910.3033

E. Ekrem and S. Ulukus, “Secrecy capacity region of the degraded com-
pound multi-receiver wiretap channel,” in Proc. Allerton Conf. Commun.,
Comntrol, and Comput., Sept. 2009.

Ersen Ekrem received the B.S. and M.S. degrees in
Electrical and Electronics Engineering from Bogazici
University, Istanbul, Turkey, in 2006 and 2007, re-
spectively. Currently, he is working toward the Ph.D.
degree in the Department of Electrical and Computer
Engineering at the University of Maryland, College
Park. His research interests include information the-
ory and wireless communications.

Sennur Ulukus received the B.S. and M.S. degrees in
Electrical and Electronics Engineering from Bilkent
University, Ankara, Turkey, in 1991 and 1993, re-
spectively, and the Ph.D. degree in Electrical and
Computer Engineering from Rutgers University, NJ,
in 1998, During her Ph.D. studies, she was with
the Wireless Information Network Laboratory (WIN-
LAB), Rutgers University. From 1998 to 2001, she
was a Senior Technical Staff Member at AT&T Labs-
Research in NJ. In 2001, she joined the University of
Maryland at College Park, where she is currently an

Associate Professor in the Department of Electrical and Computer Engineering,
with a joint appointment at the Institute for Systems Research (ISR). Her re-
search interests are in wireless communication theory and networking, network



432 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 12, NO. 5, OCTOBER 2010

information theory for wireless networks, signal processing for wireless com-
munications, and security for multi-user wireless communications. She is a re-
cipient of the 2005 NSF CAREER Award, and a co-recipient of the 2003 IEEE
Marconi Prize Paper Award in Wireless Communications. She serves/served
as an Associate Editor for the IEEE Transactions on Information Theory since
2007, as an Associate Editor for the IEEE Transactions on Communications be-
tween 2003-2007, as a Guest Editor for the IEEE Transactions on Information
Theory for the special issue on interference networks, as a Guest Editor for the
IEEE Journal on Selected Areas in Communications for the special issue on
multiuser detection for advanced communication systems and networks, as the
Co-Chair of the Communication Theory Symposium at the 2007 IEEE Global
Telecommunications Conference, as the Co-Chair of the Medium Access Con-
trol (MAC) Track at the 2008 IEEE Wireless Communications and Networking
Conference, as the Co-Chair of the Wireless Communications Symposium at
the 2010 IEEE International Conference on Communications, as the Co-Chair
of the 2011 Communication Theory Workshop, and as the Secretary of the IEEE
Communication Theory Technical Committee (CTTC) in 2007-2009.



