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Design of Non-Binary Quasi-Cyclic LDPC Codes Based on
Multiplicative Groups and Euclidean Geometries

Xuegqin Jiang and Moon Ho Lee

Abstract: This paper presents an approach to the construction
of non-binary quasi-cyclic (QC) low-density parity-check (LDPC)
codes based on multiplicative groups over one Galois field GF(q)
and Euclidean geometries over another Galois field GF'(2°). Codes
of this class are shown to be regular with girth 6 < ¢g < 18 and
have low densities. Finally, simulation results show that the pro-
posed codes perform very well with the iterative decoding.

Index Terms: Eucliean geometry, girth, lines, myltiplicative groups,
non-binary quasi-cyclic (QC) low-density parity-check (LDPC)
codes, pointsv.

I. INTRODUCTION

Low-density parity-check (LDPC) codes, introduced by Gal-
lager in 1963 [1], have drawn considerable attention since they
were rediscovered in the mid of 1990’s [2]-[9]. LDPC codes de-
sign over GF(gq) can achieve near-Shannon-limit performance
for ¢ = 2 (binary LDPC codes) and very long code length. On
the other hand, for moderate code lengths, the error performance
can be improved by increasing ¢ (non-binary LDPC codes) [2].

A straightforward implementation of the belief propagation
(BP) algorithm to decode GF(q)-LDPC codes has compu-
tational complexity dominated by O(q?) operations for each
check sum processing [2]. However, an efficient approach using
Fourier transforms over GF(2P) was presented in [10] and [11].
This approach allows reducing the computational complexity of
the BP algorithm to O(p2?) and the new iterative decoding algo-
rithm works on symbols over GF(27). It significantly reduces
the computational complexity without performance degradation.
This new effective decoding algorithm for non-binary LDPC
codes may motivate more research effort on the construction of
non-binary LDPC codes. In the rest of this paper, whenever we
mansion GF(q), we will implicitly referring to the Galois field
GF(27)

One parameter that is usually targeted for optimization in the
process of designing LDPC codes is the girth of the underly-
ing Tanner graph [3], [4]. For iterative sum-product decoding
of quasi-cyclic (QC) LDPC codes, a part of performance loss
is attributed to small values of girth. The construction of non-
binary QC-LDPC codes with girth 6 and low densities based
on Euclidean geometries has been presented in [5] and [6]. In
this paper, we introduce a new construction of non-binary QC-
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LDPC codes based on multiplicative groups over the Galois field
GF(q) and Buclidean geometries over the Galois field GF'(2°),
where s is a positive integer and ¢ is a power of two with: 1)
Large girth (6 < g < 18) and 2) low densities. The large girth
feads to the good bit error rate (BER) performances with itera-
tive decoding. The low density leads to the low decoding com-
plexity.

The rest of this paper is organized as follows. Section 1I
presents some preliminaries for the presentation. The design of
the base matrix based on Euclidean geometries over GF(2%)
is proposed in Section IIL. In Section IV, we analyze the lower
and upper bound of girth of the proposed non-binary QC-LDPC
codes and present a shift values assigning method for the design
of the shifting matrix S. The non-binary QC-LDPC matrix H is
constructed based on multiplicative groups of the Galois fields
GF(q) in Section V. Examples of the proposed codes and their
simulation results are given in Section VI. Finally, Section VII
concludes the paper.

II. PRELIMINARIES

Non-binary QC-LDPC codes are given by the null space of
the matrix as follows:

ha(m) ha(z:z) T ha(l,m
a(2,1) a(2,2) a(2,N)

H= 1
ha(M,'z) h“(sz) ha(M,m

The matrix H is a M x N array of a-multiplied circulant per-
mutation matrix and/or zero matrix. Analog to the binary case,
each row of the a-multiplied circulant permutation matrix is the
right cyclic-shift of the row above it multiplied by o« and the first
row is the right cyclic-shift of the last row multiplied by . The
shifting matrix S of H is defined by

(1,1 G(12) a(1,N)
ag2,1 a(2,2 a2 N

g = (‘ ) (‘ ) ( : ) @
(1) O(M,2) a(M,N)

H can be obtained by replacing each entry a,,, of S with
ha....- The base matrix B of H is obtained by replacing zero
matrices and a-multiplied circulant permutation matrices in H
with ‘0’s and ‘1’s, respectively. The cycles in B and S corre-
spond to the block-cycles in H. In this paper, the term “weight”
implies the number of nonzero entries in a row/column of H and
the density of B or H is defined as the ratio of the total number
of nonzero entries to the total number of entries of B or H. The
construction of proposed non-binary LDPC codes consists of
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three steps. First, construct a A x N base matrices B. Second,
replace each ‘1’ in B with a shift value in the range [0, ¢— 2] and
replace each ‘0’ with a “c0” and obtain a M x N shifting matrix
S. Third, each entry a5 of S is replaced with A, ., which
isa (g—1) x (¢—1) a-multiplied circulant permutation matrix or
zero matrix. The obtained matrixis a M{g—1) x N(¢—1) non-
binary QC-LDPC matrix H. In the following, we will elaborate
on each of these steps in detail.

III. DESIGN OF THE BASE MATRIX B

Let EG(d,2°) be a d-dimensional Euclidean geometry over
the Galois field GF(2°) where d and s are two positive inte-
gers. This geometry consists of 2%° points, each point is simply
a d-tuple over GF(2®). The all zero d-tuple 0 = (0,0, -,0)
is called the origin. A line in FG(d, 2°) consists of 2° points.
There are 2(4~1%(245 — 1)/(2% — 1) lines in EG(d, 2°). Ev-
ery line has 2(4=1% _ 1 lines parallel to it. For any point in
EG(d,2°), there are (2¢* —1)/(2° — 1) lines intersecting at this
point [7].

Let GF(29%) be the extension field of GF(2°). GF(2%)
may be regarded as the EG(d,2%). Let « be a primitive ele-
ment of GF(2%). Then, {0,a°,a!,---, a2 =2} form the 24
points of EG(d,2°). Given a line L and the line vector v;, =
(vo, V1, -+, Ugas_g) be a binary (2% — 1)-tuple with v; = 1
if o* is a point on L and v; = 0 otherwise. Let B be a base
matrix whose columns are the vectors v¥ which are generated
from all the lines in EG(d,2*) that do not pass through the
origin and whose rows correspond to the 2%° — 1 non-origin
points in EG(d,2°%). The rows are arranged in the order of
a®,a' a2, ..., a® =2 Then B consists of 2%° — 1 rows and
(2(d=1s — 1)(29 — 1)/(2° — 1) columns.

Since there are at most one line between two point, any two
columns of B have at most one ‘1’ in the same row. Conse-
quently, the girth of B is 6. Let po be the origin point and p;
be any one non-origin point in the Euclidean geometry G, there
are (2% — 1) choices for p; and there is a line L(o,1) connecting
po and p1. Let p2 be a point in G but not on Ly 1), there are
(245 — 2%)-choices for p, and there is a line L,2) connecting
Po and po and a line L(; 5 connecting p; and po. Let p3 be a
point in G but not on Lg 1), L(o,2), and Ly o), then there are
(295 — 3 - 2° + 3) choices for p3 (first exclude the 3 - 2° points
on Lo, 1y, L(o,2), and Ly 2), and then plus 3 again because po,
p1, and ps have been excluded two times) and there is a line
L, 3) connecting p; and p3 and a line L3 3y connecting p, and
p3. The three lines Ly 2y, L(2,3), and L(; 3y enclose a triangle
with p1, po, and p; as the vertices. Thus the number of 6-cycles
passing through the non-origin points is

ne = (245 — 1) - (2% — 2%) . (2% — 3.2° 4 3)/6. (3)
The (204~ —1)(2% — 1)/(2° — 1) vectors vz, of lines that do
not pass through the origin can be partitioned into

t= (WD —1)/2° -1 “

cyclic submatrices b, b, - - -, by and each submatrices contains
(2"lS —1) vectors of lines. Let by, bs, - - -, bs be & submatrices with

Ui\ AN \

Fig. 1. Quasi-cyclic cycles in two submatices of S.

1 < ¢ <t. Now, the M x N base matrix B can be represented
as
B= [bl)b27”'7b5] (5)

where M = 29 —1and N = §(2% —1). Each of these § cyclic
submatrices contains (24° — 1) columns which are obtained by
cyclic-shift any column in the submatrix (24* — 1) times. Con-
sequently, B has a quasi-cyclic structure [7].

Lemma 1: If the base matrix B is constructed into the quasi-
cyclic form as (5), then the cycles in the corresponding shifting
matrix S are quasi-cyclic.

Proof: Since B has a quasi-cyclic structure, the row and
column index pairs of ‘1’s are quasi-cyclic. Then it is clear that
the index pairs of cycles in B are also quasi-cyclic and therefore
the corresponding cycles in S are quasi-cyclic. An example of
quasi-cyclic cycles in two submatrices of S is shown in Fig. 1.

O

The base matrix B has the following properties: 1) each col-
umn has weight p = 2°; 2) each row has weight v = 2°%§; 3)
girth is 6; 4) the density of B is 2°/(2%¢ — 1).

IV. DESIGN OF THE SHIFTING MATRIX S

In this section, we first analyze the girth of the proposed non-
binary QC-LDPC codes and then introduce one method to opti-
mize the shift values in .S.

A. Girth of The Proposed LDPC Codes

After replacing each ‘1’ in B with a shift value in the range
[0,¢ — 2] and replacing each ‘0’ with a “00,” a M x N shift
matrix S = [S1, Sg, - - -, S5] is obtained.

It is stated in [8] that the necessary and sufficient condition
for the existence of the cycle of length 2 represented is

i—1

Z(a(mkvnk) - a(mk+1ank)) =0 mod (q - 1)
k=0

(6)

where m; = mo, Mk F Mit1, Mk F Net1> Qmy,n,) a0d
Q(my.1,ny) ar€ entries of S.

Theorem 1: If there are u overlaps between a block-cycle of
length 2] and a block-cycle of length 2k in a QC-LDPC code,
then there exists a cycle of length 2(2 + 2k — u) which is twice
the number of the distinct blocks in these block-cycles. Further-
more, the girth of the QC-LDPC code is at most 2(2] + 2k — u).

Theorem 2: If the base matrix B is constructed based on
the non-origin points and the lines passing through non-origin
points in the Euclidean geometries over the Galois field GF'(2°),
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the girth of the proposed non-binary QC-LDPC codes are lower
bounded by 6 and upper bounded by 18.

Proof: Letting gy, denote the girth of B and ¢ denotes the
girth of H. Itis obvious that the girth of H is at least the same as
the girth of B, which means g is lower bounded by g,. Then we
get 6 < g. Let u be the length of the overlaps between a cycle
¢z of length 27 and a cycle ¢y, of length 2k. It is clear that the
length of the block-cycle in H which corresponds to the non-
overlapped part between cg; and cgi is also at least gp, which
means

(20— w) + (2k — u)

> O
l+k—g/2 >

4. €))
According to Theorem 1 and (7), we have

2204+ 2k —u) > 22 +2k—1—Fk+gy/2)

= 20+ 2k + gy, ®)
which means g is upper bounded by 2{ + 2k -+ gs. Since 2! > gy,
2k Z gp, and gy = 6, we get g < 18. The proof is completed.

O

B. Shift Values Optimization

The shift values assigning method in the following guarantees
the girth g = 2¢ for the proposed non-binary QC-LDPC codes.

Step 1: Initially, each ‘1’ in B becomes an undetermined shift
value in S and each ‘0’ in B becomes a “00” in S.

Step 2: We assign the shift values in the range [0, ¢ — 2], col-
umn by column, from 1 to N. For the n-th column, we consider
the cycles on its left only. We denote the shift values in the n-th
column from top to bottom as ap,, n), ¥ = 1,2,---,p. If the
assigned shift value a(,,, ) forms cycles of length shorter than
2t with already existing shift values, we need to check whether
the shift values on these cycles violate the condition (6). If con-
dition (6) is met, we have to choose another nonnegative integer
in the range [0, ¢ — 2] for @(my,n)- This process is repeated until
condition (6) is not met for all the shift values in this column.
For a column of p shift values, there are (¢ — 1)? possible as-
signments.

According to Lemma IIL 1, cycles in S are quasi-cyclic. This
property reduces the complexity of the cycle searching in S. For
a given g, it is usually difficult to find shift values which guar-
antee the largest girth. However, if ¢ is sufficiently large, it is
always possible to prevent 2i — 2-cycles for 6 < 2i < 18 by
assigning the shift values such that all the sums of ¢ — 1 shift
values are different from any other modulo ¢ — 1.

V. CONSTRUCTION OF THE NON-BINARY
MATRIX H

Consider a Galois field GF'(q), where g is a power of two.
Let « be a primitive element of GF(q). Then, the powers of
a, a® = 0,a% a,---,a972, give all the elements of GF(q)
and 971 = 1. The ¢ — 1 nonzero elements of GF(q) form the
multiplicative groups of GF(q). For each nonzero element o
with 0 < i < g—2, we forma (g—1)-mple over GF(q), z(a?) =
(20,21, -, Zg—2), whose components correspond to the ¢ — 1
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nonzero elements of GF(q), where the ith component z; = o
and all the other ¢ — 2 components are equal to 0. The 0 element
of GF(q) is defined as the all-zero (¢ — 1)-tuple, (0,0, - - -,0).
This (g — 1)-tuple is referred as the g-ary location vector of the
field element o*. For each entry a(m ) of the M x N shifting
matrix S, we expand it vertically into a (g—1) X 1 vector A, n)

by multiplying o= with a®, a?, - - -,a9=? as follows:
a®(m.n)
aim,n) oy
A(m,n) = ®

a®m,n) a(q—Q)

where o> is defined as 0. Replacing each entry of A, ) by
its g-ary location vector, we obtain a (¢ — 1) x (¢ — 1) ma-
trix frg m,n) OVer GF {q). Finally, we obtain the non-binary QC-
LDPC matrix H as shown in (1). The null space over GF(q) of
H gives a non-binary QC-LDPC code C over GF(g). Replace
the nonzero entries of H with the nonzero elements of another
Galois field GF(g*), then the matrix H* over GF(¢*) is ob-
tained and the null space of H* gives another non-binary LDPC
code C* over GF(¢*). Replace the nonzero entries of H with
the nonzero elements of another Galois field GF(g*), then the
matrix H* over GF{g*) is obtained and the null space of H*
gives another non-binary LDPC code C* over GF(q*).

The non-binary matrix H and H* have the following proper-
ties: 1) each column has weight p = 2°%; 2) each row has weight
~v = 02%; 3) the girth is lower bounded by 6 and upper bounded
by 18. 4) The code rate is at least (§ — 1)/4; 5) the non-binary
minimum distance is at least p + 1 = 2° 4+ 1; 6) the density is
r=2°/(2% - 1)(g - 1).

VI. SIMULATION RESULTS

~ In the following, we use two examples to illustrate the con-
struction of the proposed codes. A method to construct non-
binary QC LDPC code based on points and parallel p-flats in
Euclidean geometry was presented in [5]. For comparison, we
first construct a QC LDPC codes C; based on the methods in-
troduced in [5]. Then, with our proposed approach, we construct
two non-binary LDPC codes Cy and C3 which have the rate and
code length close to those of C;. A binary code Cs which has
the same degree distributions and binary code length as C3 and
designed by progressive edge-growth (PEG) algorithm is also
given. For comparison, we have also consider the Shannon limit,
uncoded BPSK and the sphere-packing bound [12]. The sphere-
packing bound is for binary code length and code rate the same
as C5.

Example 1: Consider the 3-flats in the Euclidean geometry
EG(5,2) over GF(2). Based on the method introduced in [5],
we construct a 124 x 248 matrix Hy over GF(32). The null
space of H; gives a 32-ary QC LDPC code C with rate 0.528
and code length 248. To construct a code with rate and code
length close to those of C, we consider the Euclidean geometry
EG(3,2) and choose the following parameters: § = 4, ¢ = 16.
With our proposed approach, we obtain a 105 x 210 matrix Hy
over GF(16). The null space of Hy gives a 16-ary QC LDPC
code Cs with rate 0.505 and code length 210. By replacing each
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Uncoded BPSK. |
~—&— C, over GF(64)
| —&— C, over GF(32)

—6— C] over GF(64) ||

BER

E/No (dB)

Fig. 2. Simulation results of example 1.

o Uncoded BRSK
e € OEr GF(32)
g €, Over GF(16)

|} & C; over GF(32)
~—+— C, over GF(2)

T
[ j_ §hannon i i ;
0 i 2 3 4 5 & 7 3 9 8

E/No (dB)

Fig. 3. Simulation results of example 2.

nonzero entry of Hy with a nonzero element of GF(32), we
obtain a matrix H3 over GF(32). The null space of H} gives a
32-ary LDPC code (5 with rate 0.5 and code length 210. From
Fig. 2, we can see that the coding gains of 0.6dB and 1.0dB are
achigved by C; and Cj over Cy, respectively, for a BER =
107°.

Example 2: Consider the 3-flats in the Euclidean geometry
EG(6,2) over GF'(2). Based on the method introduced in [5],
we construct a 504 x 504 matrix H over GF{64). Let H; be
a 252 x 504 submatrix of H. The null space of H; gives a 64-
ary QC LDPC code 'y with rate 0.528 and code length 504,
We consider the Euclidean geometry EG(3, 2) and choose the
following parameters: § = 4, ¢ = 32. With our proposed ap-
proach, we obtain a 217 x 434 matrix Hy over GF(32). The
null space of Hy gives a 32-ary QC LDPC code C, with rate
R = 0.502 and code length 434. By replacing each nonzero en-
try of Hy with a nonzero element of GF(64), we obtain a matrix
H3 over GF'(64). The null space of H} gives a 64-ary LDPC
code C5 with rate 0.5 and code length 434. From Fig. 3, we can
see that the coding gains of 0.7 dB and 1.2 dB are achieved by

Table 1. A list of parameters of codes in example 1.

[ Code | Matrix size | Binary length | Density | GF(q) |

C: | 124 x 248 1240 0.0313 | GF(32)
C, | 105 x 210 840 0.0190 | GF(16)
C; | 105 x 210 1050 0.0190 | GF(32)
Cs | 105 x 210 1050 0.0190 | GF(2)

Table 2. A list of parameters of codes in example 2.

| Code | Matrix size | Binary length | Density | GF(q) |

C; | 124 x 248 1488 0.0313 | GF(64)
Cy | 105 x 210 1050 0.0190 | GF(32)
C; | 105 x 210 1260 0.0190 | GF(64)
Cs | 105 x 210 1260 0.0190 | GF(2)

C, and C} over Cj, respectively, for a BER = 1075,

The complexities of the LDPC codes are not only dominated
by the order of the GF{q) but also by the densities of the parity-
check matrices. Table I and Table II show sizes of parity-check
matrices, binary code length, densities and the corresponding
Galois field of all the simulated codes in examples 1 and 2, re-
spectively.

VII. CONCLUSION

In this paper, an approach to the construction of non-binary
QC-LDPC with large girth and low densities has been presented.
First, we designed the base matrix B based on Euclidean geome-
tries over GF(2%). Second, we analyzed the lower and upper
bound of our proposed codes and introduce one method to opti-
mize the shifting matrix S. Third, we construct the non-binary
QC matrix H based on the shifting matrix S and multiplicative
group of GF(q). The proposed codes have girth6 < g < 18 and
low densities 2°/(2¢° — 1)(q — 1). Because of the low density,
our codes have low decoding complexity. The simulation results
show that substantial performance gains result from large girth.
As girth increase, the BER of our proposed codes decrease.
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