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Euclidian Distance Minimization of Probability Density
Functions for Blind Equalization

Namyong Kim

Abstract: Blind equalization techniques have been used in broad-
cast and multipoint communications. In this paper, two criteria
of minimizing Euclidian distance between two probability density
functions (PDFs) for adaptive blind equalizers are presented. For
PDF calculation, Parzen window estimator is used. One criterion is
to use a set of randomly generated desired symbols at the receiver
so that PDF of the generated symbols matches that of the transmit-
ted symbols. The second method is to use a set of Dirac delta func-
tions in place of the PDF of the transmitted symbols. From the sim-
ulation results, the proposed methods significantly outperform the
constant modulus algorithm in multipath channel environments.

Index Terms: Blind equalizer, Dirac delta, Euclidian distance func-
tion, information theoretic learning (ITL), Parzen window, proba-
bility density function (PDF).

I. INTRODUCTION

Multipoint communication has been an increasingly focused
topic in broadcasting systems, computer communication net-
works, and the wireless/mobile networks [1]. In applications
such as broadcast and multipoint networks, blind equalizers to
counteract multipath effects are very useful since they do not
require a training sequence to start up or to restart after a com-
munications breakdown [2], [3].

Problems involving the training of adaptive equalizers have
been solved usually through the use of mean squared error
(MSE) criterion. As another way for solving these problems,
information-theoretic learning (ITL) has been introduced by
Princepe [4]. Unlike the MSE criterion that utilizes error energy,
ITL algorithms are based on a combination of a nonparametric
probability density function (PDF) estimator and a procedure to
compute entropy or information potential (IP).

As an application of ITL, Erdogmus et al. introduced an in-
formation theoretic approach based on Kullback-Leibler (KL)
divergence [5] minimization for training adaptive systems in
supervised learning settings using both labeled and unlabeled
data [6]. The KL divergence is a way to estimate mutual in-
formation which is capable of quantifying the entropy between
pairs of random variables. But, it is not quadratic in the PDFs,
so it can not be easily integrated with the information potential.

Another measure of merit which can be expressed as infor-
mation potential is the minimum error entropy (MEE) criterion
that has been compared in terms of the error distributions [4].
The combination of Renyi’s quadratic entropy with the Parzen
window using a Gaussian kernel [7] leads to an estimation of en-
tropy or information potential by computing interactions among
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pairs of output samples which is a practical cost function for
ITL. In their work, it has also been shown that Renyi’s quadratic
entropy expression with Parzen PDF estimator is negatively pro-
portional to the logarithmic value of the information potential of
error samples. Since logarithm is a monotonic function, infor-
mation potential is maximized in MEE instead of minimizing
Renyi’s entropy. Therefore, MEE criterion can be considered as
maximization of information potential.

The study demonstrated that the error samples of the entropy-
trained systems exhibit a more concentrated density function
and the distribution of the produced outputs is also closer to that
of the desired signals compared to MSE. So, MEE criterion can
be a promising alternative to MSE in supervised channel equal-
ization applications [8].

However, MEE criterion has been born as a measure for only
supervised learning. In its final cost function, MEE criterion is
a nonlinear function of the difference between two error sam-
ples. For blind signal processing, the error values should be
replaced with constant modulus errors as in constant modulus
algorithm (CMA) [9]. Then, the MEE cost function using con-
stant modulus error becomes independent of the constant mod-
ulus Ry = E[|Am|*]/E[|Am|?], where A, is the transmitted
symbol level and E[] is the expectation operator. As a result,
the MEE cost function forces equalizer output powers to have
the same value. In M-ary modulation schemes, the power of
each desired signal has different values. The force induced from
maximizing the MEE cost function will lose its target direction
because the cost function forces the equalizer outputs to obtain
the same output power in spite of different desired powers. Con-
sequently, MEE cost function loses the information of the con-
stant modulus Rs. This may lead the MEE cost function to ill-
convergence.

As another measure for unsupervised adaptive signal process-
ing based on ITL, the Euclidian distance (ED) between two
PDFs contains the desired information within the desired PDF
not like in the MEE measure. Also the ED criterion contains
only quadratic terms to be utilized very easily. Furthermore,
whenever we have the shape information of desired PDF, we
can construct the desired PDF in various ways so that we can
apply the ED criterion to any adaptive signal processing appli-
cations aimed at obtaining desired output. These characteristics
can be the most important advantage of using ED criterion. Re-
cently, the ED-based PDF matching algorithm was introduced
by Jeong et al. and applied successfully to the classification
problem with a real biomedical data set [10]. In that method,
the authors proposed to reuse the previously acquired training-
phase output samples in the test phase so that the test-phase out-
put PDF follows the training-phase output PDF.

In this paper, based on the criterion of ED minimization of
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two PDFs, we investigate not only the interactions between out-
put samples and randomly generated desired samples but also
the interactions between desired level values and output samples
for application to blind equalization. In our previous work [11]
for blind equalization, we created desired symbols for the de-
sired PDF construction by utilizing the PDF information of the
transmitted symbols. The idea was to generate, at the receiver,
random symbol values that have the same PDF shape as the
transmitted symbol PDF shape. This algorithm uses the Parzen
window method for the desired PDF construction. On the other
hand, in this work, the Parzen window method is no longer used
in the desired PDF construction. That is, instead of using self-
generated samples, the desired PDF of the proposed cost func-
tion is created only with a set of Dirac-delta functions that com-
plies well with the modulation schemes.

This paper is organized as follows. Section II presents the
baseband pulse amplitude modulation (PAM) data transmission
system model and blind equalizer structure considered. In Sec-

tion III, we briefly describe the constant modulus blind equalizer

algorithm which is based on MSE criterion. In Section IV, the
first ED minimization method using randomly generated sym-
bols at the receiver is introduced. The second method for blind
equalization using a set of Dirac delta functions is proposed in
Section V and the robustness of the proposed method is ana-
lyzed in Section VI. Section VII reports simulation results and
discussions. Finally, concluding remarks are presented in Sec-
tion VIIL

II. SYSTEM MODEL

For simplicity, we consider the baseband-equivalent data tra-
nsmission system of Fig. 1 with transmitted symbol set {4, },
multi-path channel H(z) with the impulse response A, received
signal x; at time k& and the equalizer output y. The linear
tapped delay line (TDL) equalizer structure is employed with L
weights. For the weight adaptation without the aid of a training
sequence dy, blind algorithms are used according to proposed
cost functions. CMA. uses output 3 and Ry based on MSE cri-
terion. Fig. 1 depicts briefly what the two different PDF con-
struction methods utilize for ED minimization. Our initial al-
gorithm uses N random symbol values of d; generated at the
receiver, and the algorithm proposed in this paper uses a set of
Dirac-delta functions for the desired PDF construction.

1. CMA BASED ON MSE CRITERION

Channel equalization without the aid of a training sequence
is referred to as blind channel equalization. Unlike traditional
trained equalization algorithms, many of the widely employed
blind equalization algorithms employ nonlinearity at the equal-
izer output to generate the error signal for weight updates based
on MSE criterion. One of the well known blind equalization al-
gorithms based on MSE criterion is CMA which minimizes the
following cost function [9]

Poua=E [(kalz - Rz)z} . )

M-ary 7" —

|| Channel | " Blind Yk
PAM equalizer
signaling H()
system AWGN va
{4,}

(@)

r
Xk = [ X Xy eees Xpoga ]

Randomly generated symbols

T, SO
D)) e

)

Dirac-delta functions

Fig. 1. (a) Simplified baseband PAM communication system and (b}
blind equalizer structure.

The minimization of Poya with respect to the equalizer coef-
ficients can be performed recursively according to the steepest
descent method

O0PcMma

W 63

Wiew = Woig — pioma

where [1opa is the step-size parameter for CMA.

In case of on-line linear equalization, a TDL can be used for
input Xz = [:ck, Th—1y""y mk_L+1]Tand output ¥y = W{X&
at time k. By differentiating Py 4 and dropping the expectation
operation, we obtain the following least mean square (LMS)-
type algorithm for adjusting the blind equalizer coefficients

Wit = Wi = 2uomaXuk(luel” — Ra)- 3)

‘We assume that M -ary PAM signaling systems are employed
and all M levels are equally likely to be transmitted a priori
with a probability 1/M, and the transmitted levels A,, takes the
following discrete values:

Ap=2m~-1-M, m=1,2,.--, M. @
Then, the constant modulus R, becomes
B [|An/'

2 = m &)
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IV. BLIND EQUALIZATION BASED ON ED
MINIMIZATION USING RANDOMLY GENERATED
SYMBOLS AT THE RECEIVER

The ED between the desired symbol PDF f; and the equalizer
output PDF f, can be minimized with respect to weight W as

min (EDIfa, £,)

—uin ([ saerde + [ 30 -2 [ eI 161

©)

If the two distributions are close to each other, the ED cost func-
tion (6) minimizes the divergence between the desired symbols
and equalizer output samples. In other words, we create desired
symbols for the equalizer input signal by utilizing the PDF infor-
mation of the transmitted symbols. Our initial idea was to gen-
erate, at the receiver, random symbols that have the same PDF
of the transmitted symbols [10), which is introduced as follows.

Given a set of randomly generated N symbols Dy =

{d1,dz, -, dn}, the PDF based on Parzen window method can
be approximated by

1 N
=52 Ga(6—dy)
i=1
@)
EER | (¢ - di)?
-%2; %exp[ ]

202
Under the assumption that all M levels are equally likely, the
number of random symbols corresponding to each level A,, is
N/M.

The point noticeable here is that the random symbols used
for Parzen PDF calculation have the same PDF pattern as the
transmitted symbols, but the symbols are randomly generated
ones at the receiver, not the exact training symbols. This ap-
proach makes blind equalization possible. Then, the integrals of
the multiplication of two PDFs in (6) become

| sierie - NQZZG d—d), @
g=1 g1
. 1 N N
/ fL(&)de = N2 ZZGaﬁ(yj — Yi)s 9
i=1 j=1
f fal€) £y (§)dE = <5 ZZGU\/_(d —y)- (10)

=1 j=1

Equation (8) can be the IP of randomly generated symbols,
which is denoted as TP, (d, d) in this paper, where the subscript
1 indicates the method 1. We note that (8) is not a function
of weight. By summing the interactions among pairs of output
samples we can obtain the IP;(y,y) as in (9). Equation (10)
defined as I P;(d, y) indicates the interactions between the two
different variables d and y. So, the cost function (6) can be re-
duced as P in (11).

P =1Pi(y,y)

— 2IPy(d, y). (11)
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Now a gradient descent method can be applied for the min-
imization of the cost function (11) with respect to equalizer
weight as follows

OP,
Wnew = Wold - ,ufla_w_l‘ (12)
The gradient is evaluated from
oPy 1
o YD G-
OWi  2N%0% 2 N+1, jok— N+1
G, sy — y)(Xi — X;) a3
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For convenience sake, this method 1 shall be referred to here
as minimum ED 1 (MED1) algorithm.

Normally, modulation schemes are known to receivers. Fur-
thermore, most transmitters use independent and identically dis-
tributed symbols. Under these considerations, we propose a new
method of using a set of Dirac delta functions described in the
following section.

V. BLIND EQUALIZATION USING A SET OF DIRAC
DELTA FUNCTIONS

According to our assumption that ail the M levels of M-
ary PAM signaling systems are equally likely with a probabil-
ity 1/M, we can construct PDF of the desired symbols without
knowing the exact training symbols as

Fal€) =7 1506 — A2) + (6 -~ 42) +

+6(6— Am) + -+ +0(6 — Au)]-

(14)

Substituting (14) into (6), the information potential I.P»(d, d)
can be expressed as

1Py(d,d) = / (e

1 M M
=WZZ / (€ — AD3(E — Ap)de  (15)

_ L

T

Accordingly, the information potential P, (d, y) becomes

M
1
1Pid,) = [ 101,006 = 37 3 f(An). (16)
m=1
By using Parzen window method (7) in (16), we have
IPy(d,y) Z ZG v). A7

m—lz 1
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Since (9) and (17) which contain system output are a function
of weight but (15) is not a function of weight, ED minimization
(6) can reduce to the following criterion

winl[IP1(y, y) — 21 P2(d, y)]. (18)
With the cost function P defined as
P2 = IPl(y)y) - 2IP2(d7 y))
the gradient is calculated from
3 k
o 1
OW}  2N22 2 ] Z
i=k—N+1, j=k—N+1
2
Covali —v)(Xi = Xy) = 3r5—3 (19)
k M
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Finally, the weight update of the method 2 (MEDZ) can be
obtained as

0P,

W,oow g2
e 25w

=W — 20)

Comparing (14) and (7), we can notice the essential rela-
tionship between MED1 and MED2. When we let the size o
of the Gaussian kernel in (7) go to zero, the Gaussian function
G, (€ — d;) becomes a Dirac-delta function §(§ — d;). This ob-
servation leads us to finding out the relationship between MED1
and MED2 that MSE2 can be considered as an asymptotic case
of MEDI.

VI. ANALYSIS OF ROBUSTNESS OF THE PROPOSED
METHOD OVER CMA

MSE criterion contains only second-order statistics defined
by its mean and variance. When ITL learning criteria are con-
sidered, more information is utilized [12]. Using a Taylor series
expansion for the Gaussian kernel, I P(d, y) of MED?2 criterion
can be rewritten as

IPs(d,9) = 5o Z 56, (Am = )

m=1 {=1
M N o

MNU\/?’E Z ZZ 2”02nn’

m=1 i=1 n=0

yi)Zh‘

@21

We can notice from (21) that all even moments of the er- -

ror, not only the second moments, are constrained. On the other
hand, the constant modulus algorithm is based on the MSE crite-
rion which contains only second-order statistics. MSE criterion,
therefore, would be able to extract all possible information from
a signal whose statistics are only defined by its mean and vari-
ance. This suggests that the proposed method using the Gaussian
kernel exploits more information than MSE criterion, on which
CMA is based.

To provide some more insight on the soundness of the pro-
posed method, we rewrite the term I P2(d, y) as a set of parti-
tioned functions. Considering 4PAM signaling, as used in our
simulation in Section VI, the set of outputs y;can be partitioned

in accordance with the transmitted symbol set A,, = {£3, £1}
into four subsets as
RY) = {y;, Am = 3}, (22)
RO = {y;, Am =1}, 23)
RCY = {y;, Am = -1}, (24)
R = {y;, Am = 3} @5)

Then, the information potential I P(d, 77) can be expressed as

IP2(A7y) = Z G0(3_yi)+ Z Ga(l_y’é)
iER(+3) i€ER(+1)
+ ) Go(-1-w)+ Y. Go(-3-y)
i€ R(-D ieR(-3)

- (26)

Noticing that I P, (d,y) is maximized in (18), each term in
(26) is maximized when y; = 3 fori € R(*3), 4, = 1 for
i€ RHY gy, = —1fori € RV, andy; = —3 fori € R(-3),
respectively. This process can be viewed that the criterion forces
the output signal to have correct symbol values.

On the other hand, the CMA cost function (1) can be parti-
tioned using a sample mean estimator as

Poua= Y. (Re—9])’+ Y (Ra—4})’
i€ R(+3) i€ R+ . (27)
+ 3 (Be-)*+ Y. (B
i€ R(—1) i€ R(—3)

where Ry = E[|Am|"]/E[|An|?] = 8.2. Similar to the pro-
cess in (26), each term in (27) is minimized when y? = 8.2
for all symbol regions: i € R+, i ¢ RHY, 5 € RV, and
i € R(=®)_ This implies that the cost function of CMA pushes
output samples to have a constant power 8.2 regardless of sym-
bol classes. This analysis suggests that the proposed blind ap-
proach uses more rigorous constraints than CMA in order to
produce output samples closer to their correct symbols.

Performance difference between MED2 and MED1 in PAM
systems is considered due largely to the difference of the kernel
size o between the two algorithms. The kernel size in I Py (d, y)
of MEDI is o+/2, whereas the kernel size in IP;(d,y) of
MED?2 is ¢. The kernel size determines the accuracy of the solu-
tion [13]. A small kernel size means a small amount of overlap-
ping in Parzen PDF estimation and the desired solution is very
near the minimum of Ps.

Though MED?2 has enhanced performance, it is not readily
applicable to other adaptive systems in which desired PDF is
not expressed as a set of Dirac delta functions. On the other
hand, MED1 can be used in any adaptive systems where random
symbols can be generated so as to conform to the desired PDE.

Thus, we are lead to believe that our approaches in this blind
equalizer application using the information theoretic learning
produce superior performance to CMA based on MSE criterion.
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—m— Transmitted symbol PDF for a short
term period

-- @ - Generated symbol PDF by MED1 or MED2
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Fig. 2. Probability density distributions of generated symbols and trans-
mitted symbols for a short term period.

VII. RESULTS AND DISCUSSION

In this section, we present and discuss simulation results that
illustrate the comparative performance of the proposed MED al-
gorithms versus CMA in blind equalization for two linear chan-
nels. The 4 level random symbols {£3, +1} are transmitted th-
rough a channel and the impulse response, h; of the channel
model H(z) [14] is dependent on the channel parameter BW
as h; = 1/2{1 + cos[2n(i — 2)/BW]}, i = 1,2,3. The pa-
rameter BW determines the channel bandwidth and controls
the eigenvalue spread ratio (ESR) of the correlation matrix of
the inputs in the equalizer. The number of weights in the linear
TDL equalizer structure is set to L = 11. The channel noise is
additive zero mean white Gaussian (AWGN) with a variance of
0.001. As measures of equalizer performance, we use probabil-
ity densities for errors at that noise variance of CMA, MEDI,
and MED2, and then bit error rate (BER) versus Eb/No curves
of CMA, MED?2, and a training-aided algorithm (LMS) with
L = 11. The convergence parameters for CMA are 0.00001 and
0.0000005 for channel 1 (BW = 3.1, ESR = 11.12) and chan-
nel 2 (BW = 3.3, ESR = 21.71), respectively. For MED1 and
MED2, we set the data-block size N = 20, and the conver-
gence parameter p11 = po = 0.005. The kernel size is chosen as
o = 0.6 for MED1 and MED2. All the convergence parameters
are obtained when the algorithms show the lowest steady-state
error performance, and proper kernel sizes are chosen based on
Silverman’s rule [15].

The transmitted 4PAM symbols takes the values of
{-3,-1,+1,+3} which are generated by computer as 2 x
random(4) — 3. To investigate that the generated PDFs conform
to the transmitted PDF, the randomly generated desired sym-
bols Dy = {di,dy,---,d;, -+, dn} for MEDI are compared
with the transmitted 4PAM symbols. The random symbol d; for
MED1 is generated according to the following rule.

+3: §=1,2,3,---,N/4,
Q= +1: j=N/4+1,N/4+2,.-- N/2, 28)
’ ~1: §=N/2+1,N/2+2,---.3N/4,

-3: j=3N/4+1,3N/4+2,--N.

Clearly, the mathematical PDF expression for the set Dy in
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Fig. 4. Probability density for errors for channel 1.

(28)is fa(€) = 2[6(€—3) +8(§ —1) +86(E+ 1)+ (€ +3)].
Referring to (14), we notice that MED?2 has exactly the same
probability distribution f;(£) as MED1 does.

In Fig. 2, the PDFs of transmitted symbols, MEDI, and
MED?2 are depicted. For a short term period of transmitted sym-
bols (about 10000 symbols), PDF values have shown a very
slight difference among them but the same in the long run.

The main drawback of CMA-type equalization algorithms is
that they require a long sequence of data to converge. So, we
give a comparison on the convergence rate in Figs. 3 and 6 for
channel 1 and channel 2, respectively. We see that increasing
the ESR has the effect of increasing the steady-state error of
CMA in comparison of convergence rate and PDF distribution.
In both channel environments, MED2 has shown significantly
fast convergence and lower steady state MSE. In case of chan-
nel 1, the error performance of MED1 shows a slightly increased
performance in comparison with CMA. In Fig. 5, BER perfor-
mance for channel 1 shows that MED?2 has 1 dB performance
enhancement compared to CMA. For channel 2, CMA shows
severe performance degradation in Fig. 7, but the error perfor-
mance of MED1 and MED?2 is superior.

CMA was proposed for constant magnitude signals such as
frequency modulation (FM) and quadratic phase shift keying
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(QPSK). It is worthwhile to compare the proposed methods,
other algorithms and CMA in QPSK modulation scheme. As
a figure of merit, MSE convergence performance is compared in
Fig. 9. The quadratic distance cost function {QD) is a blind al-
gorithm based on the minimization of ED between the two PDFs
of output power and transmitted symbol power [16]. In the as-
pect of using output symbol power, QD can be considered to be
closely related with CMA.

The kernel size for QD and MED?2 is set to 0.8 and 0.5, re-
spectively. The convergence parameter for both MED?2 and QD
is 0.005, and for CMA, 0.0005 is used. In QPSK environment,
QD has shown small performance enhancement in convergence
rate compared to CMA, but it has shown less variance in steady
state MSE than CMA. The proposed MED2 converges in about
2000 samples and its steady state MSE is about 2 dB lower than
QD. The training-aided algorithm converges in about 1000 sam-
ples. Though MED?2 is a little slower than the training-aided al-
gorithm, it has the same steady state MSE performance as the
training-aided algorithm, and furthermore it is noticeable that
the MSE curves of training-aided algorithm and CMA fluctu-
ate more than MED?2 in the steady state. This indicates that
the proposed MSE?2 is considered to have less excess MSE in
QPSK modulation scheme. In Figs. § and 9, the proposed MED2
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method illustrates almost the same BER or minimum MSE per-
formance as the training-aided equalizer algorithm does. The
training-aided algorithm is based on the MSE criterion, whereas
the proposed algorithms are based on information potential in-
duced from Euclidian PDF distance.

VIII. CONCLUSION

For blind equalization, we introduced the criterion of ED min-
imization between the output PDF and the PDF of the transmit-
ted symbols. In creating the PDF of the transmitted symbols at
the receiver, we proposed two methods. One method is to use
a set of randomly generated desired symbols that the PDF of
the generated symbols matches that of the transmitted symbols,
and the second one is to use a set of Dirac delta functions as
the PDF of the transmitted symbols. In both channel models,
the proposed methods, MED1 and MED?2, show enhanced per-
formance without significant performance degradation in com-
parison with CMA. This implies that the proposed methods can
be considered relatively insensitive to ESR variations compared
to CMA. The BER performance comparison reveals that MED2
has very close performance to the training-aided LMS equal-
izer, so the proposed method MED2 can be successfully em-
ployed in blind equalizer applications. In future work, research
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for reduced computational complexity is considered for efficient
implementation.
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