DOI QR코드

DOI QR Code

Calcium Mobilization Inhibits Lipid Accumulation During the Late Adipogenesis via Suppression of PPARγ and LXRα Signalings

  • Kim, Seung-Jin (Dept. of Biological sciences, College of Natural sciences, Chonnam National University) ;
  • Choi, Ho-Jung (Dept. of Biological sciences, College of Natural sciences, Chonnam National University) ;
  • Jung, Chung-Hwan (Dept. of Biological sciences, College of Natural sciences, Chonnam National University) ;
  • Park, Sung-Soo (Dept. of Biological sciences, College of Natural sciences, Chonnam National University) ;
  • Cho, Seung-Rye (Dept. of Biological sciences, College of Natural sciences, Chonnam National University) ;
  • Oh, Se-Jong (Division of Animal Science, College of Agriculture and Life Science, Chonnam National University) ;
  • Kim, Eung-Seok (Dept. of Biological sciences, College of Natural sciences, Chonnam National University)
  • Received : 2010.04.11
  • Accepted : 2010.10.14
  • Published : 2010.10.31

Abstract

Calcium plays a role as a signaling molecule in various cellular events. It has been reported that calcium suppresses adipocyte differentiation only in the early phase of adipogenesis. Herein, we demonstrate that treatment of A23187, a mobilizer of intracellular calcium, on day 4 post adipocyte differentiation could still reduce lipid accumulation in differentiating 3T3-L1 cells for 48 h. In addition, luciferase reporter gene and RT-Q-PCR assays demonstrate that A23187 can selectively inhibit transcriptional activities and expression of PPAR$\gamma$ and LXR$\alpha$, suggesting that A23187 may reduce lipid accumulation in the late phase of adipogenesis via downregulation of PPAR$\gamma$ and LXR$\alpha$ expression and transactivation. Moreover, inhibition of HDAC activity by trichostatin A (TSA) partially blocked A23187-mediated downregulation of transcriptional activities of PPAR$\gamma$ and LXR$\alpha$. Together, our data demonstrate that calcium mobilization inhibits expression and transcriptional activities of PPAR$\gamma$ and LXR$\alpha$, resulting in reduced lipid accumulation in differentiating adipocytes, and thus, mobilization of intracellular calcium in adipocytes may serve as a new preventive and therapeutic approach for obesity.

Keywords

References

  1. Berger, J., Tanen, M., Elbrecht, A., Hermanowski-Vosatka, A., Moller, D. E., Wright, S. D., and Thieringer, R. (2001) Peroxisome proliferator-activated receptor-gamma ligands inhibit adipocyte 11beta-hydroxysteroid dehydrogenase type 1 expression and activity. J. Biol. Chem. 276, 12629-12635. https://doi.org/10.1074/jbc.M003592200
  2. Berridge, M. J. (1993) Inositol trisphosphate and calcium signalling. Nature 361, 315-325. https://doi.org/10.1038/361315a0
  3. Campbell, A. K. (1983) Intracellular calcium: Its universal role as regulator. John Wiley & Sons, Inc. Chichester; New York.
  4. Cariou, B., van Harmelen, K., Duran-Sandoval, D., van Dijk, T. H., Grefhorst, A., Abdelkarim, M., Caron, S., Torpier, G., Fruchart, J. C., Gonzalez, F. J., Kuipers, F., and Staels, B. (2006) The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J. Biol. Chem. 281, 11039-11049. https://doi.org/10.1074/jbc.M510258200
  5. Chawla, A., Schwarz, E. J., Dimaculangan, D. D., and Lazar, M. A. (1994) Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 135, 798-800. https://doi.org/10.1210/en.135.2.798
  6. Chen, G., Liang, G., Ou, J., Goldstein, J. L., and Brown, M. S. (2004) Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver. Proc. Natl. Acad Sci. USA 101, 11245-11250. https://doi.org/10.1073/pnas.0404297101
  7. Darlington, G. J., Ross, S. E., and MacDougald, O. A. (1998) The role of C/EBP genes in adipocyte differentiation. J. Biol. Chem. 273, 30057-30060. https://doi.org/10.1074/jbc.273.46.30057
  8. Draznin, B., Sussman, K. E., Eckel, R. H., Kao, M., Yost, T., and Sherman, N. A. (1988) Possible role of cytosolic free calcium concentrations in mediating insulin resistance of obesity and hyperinsulinemia. J. Clin. Invest. 82, 1848-1852. https://doi.org/10.1172/JCI113801
  9. Duffus, J. H. and Patterson, L. J. (1974) Control of cell division in yeast using the ionophore, A23187 with calcium and magnesium. Nature 251, 626-627. https://doi.org/10.1038/251626a0
  10. Evans, R. M. (1988) The steroid and thyroid hormone receptor superfamily. Science 240, 889-895. https://doi.org/10.1126/science.3283939
  11. Forman, B. M., Tontonoz, P., Chen, J., Brun, R. P., Spiegelman, B. M., and Evans, R. M. (1995) 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 83, 803-812. https://doi.org/10.1016/0092-8674(95)90193-0
  12. Fu, M., Sun, T., Bookout, A. L., Downes, M., Yu, R. T., Evans, R. M., and Mangelsdorf, D. J. (2005) A Nuclear Receptor Atlas: 3T3-L1 adipogenesis. Mol. Endocrinol. 19, 2437-2450. https://doi.org/10.1210/me.2004-0539
  13. Giguere, V. (1999) Orphan nuclear receptors: from gene to function. Endocr. Rev. 20, 689-725. https://doi.org/10.1210/er.20.5.689
  14. Gregoire, F. M., Smas, C. M., and Sul, H. S. (1998) Understanding adipocyte differentiation. Physiol. Rev. 78, 783-809
  15. Gregor, M. F. and Hotamisligil, G. S. (2007) Thematic review series: Adipocyte Biology. Adipocyte stress: the endoplasmic reticulum and metabolic disease. J. Lipid. Res. 48, 1905-1914. https://doi.org/10.1194/jlr.R700007-JLR200
  16. Guilherme, A., Virbasius, J. V., Puri, V., and Czech, M. P. (2008) Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9, 367-377. https://doi.org/10.1038/nrm2391
  17. Jensen, B., Farach-Carson, M. C., Kenaley, E., and Akanbi, K. A. (2004) High extracellular calcium attenuates adipogenesis in 3T3-L1 preadipocytes. Exp. Cell Res. 301, 280-292. https://doi.org/10.1016/j.yexcr.2004.08.030
  18. Joseph, S. B., Laffitte, B. A., Patel, P. H., Watson, M. A., Matsukuma, K. E., Walczak, R., Collins, J. L., Osborne, T. F., and Tontonoz, P. (2002) Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J. Biol. Chem. 277, 11019-11025. https://doi.org/10.1074/jbc.M111041200
  19. Juvet, L. K., Andresen, S. M., Schuster, G. U., Dalen, K. T., Tobin, K. A., Hollung, K., Haugen, F., Jacinto, S., Ulven, S. M., Bamberg, K., Gustafsson, J. A., and Nebb, H. I. (2003) On the role of liver X receptors in lipid accumulation in adipocytes. Mol. Endocrinol. 17, 172-182. https://doi.org/10.1210/me.2001-0210
  20. Kershaw, E. E. and Flier, J. S. (2004) Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 89, 2548-2556 https://doi.org/10.1210/jc.2004-0395
  21. Kim, E., Xie, S., Yeh, S. D., Lee, Y. F., Collins, L. L., Hu, Y. C., Shyr, C. R., Mu, X. M., Liu, N. C., Chen, Y. T., Wang, P. H., and Chang, C. (2003) Disruption of TR4 orphan nuclear receptor reduces the expression of liver apolipoprotein E/CI/C-II gene cluster. J. Biol. Chem. 278, 46919-46926. https://doi.org/10.1074/jbc.M304088200
  22. Kim, H. B., Kong, M., Kim, T. M., Suh, Y. H., Kim, W. H., Lim, J. H., Song, J. H., and Jung, M. H. (2006) NFATc4 and ATF3 negatively regulate adiponectin gene expression in 3T3-L1 adipocytes. Diabetes. 55, 1342-1352. https://doi.org/10.2337/db05-1507
  23. Kitamura, N., Wong, P., and Matsumura, F. (2006) Mechanistic investigation on the cause for reduced toxicity of TCDD in wa-1 homozygous TGFalpha mutant strain of mice as compared its matching wild-type counterpart, C57BL/6J mice. J. Biochem. Mol. Toxicol. 20, 151-158. https://doi.org/10.1002/jbt.20131
  24. Laffitte, B. A., Joseph, S. B., Walczak, R., Pei, L., Wilpitz, D. C., Collins, J. L., and Tontonoz, P. (2001) Autoregulation of the human liver X receptor alpha promoter. Mol. Cell. Biol. 21, 7558-7568. https://doi.org/10.1128/MCB.21.22.7558-7568.2001
  25. Lane, M. D., Tang, Q. Q., and Jiang, M. S. (1999) Role of the CCAAT enhancer binding proteins (C/EBPs) in adipocyte differentiation. Biochem. Biophys. Res. Commun. 266, 677-683. https://doi.org/10.1006/bbrc.1999.1885
  26. Liang, G., Yang, J., Horton, J. D., Hammer, R. E., Goldstein, J. L., and Brown, M. S. (2002) Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c. J. Biol. Chem. 277, 9520-9528. https://doi.org/10.1074/jbc.M111421200
  27. Moniotte, S., Kobzik, L., Feron, O., Trochu, J. N., Gauthier, C., and Balligand, J. L. (2001) Upregulation of beta(3)- adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation. 103, 1649-1655. https://doi.org/10.1161/01.CIR.103.12.1649
  28. Papakonstantinou, E., Flatt, W. P., Huth, P. J., and Harris, R. B. (2003) High dietary calcium reduces body fat content, digestibility of fat, and serum vitamin D in rats. Obes. Res. 11, 387-394. https://doi.org/10.1038/oby.2003.52
  29. Peet, D. J., Turley, S. D., Ma,W., Janowski, B. A., Lobaccaro, J. M., Hammer, R. E., and Mangelsdorf, D. J. (1998) Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR$\alpha$. Cell. 93, 693-704. https://doi.org/10.1016/S0092-8674(00)81432-4
  30. Pilvi, T.K., Storvik, M., Louhelainen, M., Merasto, S., Korpela, R., and Mervaala, E. M. (2008) Effect of dietary calcium and dairy proteins on the adipose tissue gene expression profile in diet-induced obesity. J Nutrigenet Nutrigenomics. 1, 240-251. https://doi.org/10.1159/000151238
  31. Rosen, E. D. and Spiegelman, B. M. (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature. 444, 847-853. https://doi.org/10.1038/nature05483
  32. Rosen, E. D., Walkey, C. J., Puigserver, P., and Spiegelman, B. M. (2000) Transcriptional regulation of adipogenesis. Genes. Dev. 14, 1293-1307.
  33. Schmid, B., Rippmann, J. F., Tadayyon, M., and Hamilton, B. S. (2005) Inhibition of fatty acid synthase prevents preadipocyte differentiation. Biochem. Biophys. Res. Commun. 328, 1073-1082. https://doi.org/10.1016/j.bbrc.2005.01.067
  34. Sekiya, M., Yahagi, N., Matsuzaka, T., Takeuchi, Y., Nakagawa, Y., Takahashi, H., Okazaki, H., Iizuka, Y., Ohashi, K., Gotoda, T., Ishibashi, S., Nagai, R., Yamazaki, T., Kadowaki, T., Yamada, N., Osuga, J., and Shimano, H. (2007) SREBP-1-independent regulation of lipogenic gene expression in adipocytes. J. Lipid. Res. 48, 1581-1591. https://doi.org/10.1194/jlr.M700033-JLR200
  35. Shi, H., Halvorsen, Y. D., Ellis, P. N., Wilkison, W. O., and Zemel, M. B. (2000) Role of intracellular calcium in human adipocyte differentiation. Physiol Genomics. 3, 75-82.
  36. Shi, Y. and Burn, P. (2004) Lipid metabolic enzymes: emerging drug targets for the treatment of obesity. Nat. Rev. Drug Discov. 3, 695-710. https://doi.org/10.1038/nrd1469
  37. Szabo, E., Qiu, Y., Baksh, S., Michalak, M., and Opas, M. (2008) Calreticulin inhibits commitment to adipocyte differentiation. J. Cell Biol. 182, 103-116. https://doi.org/10.1083/jcb.200712078
  38. Volle, D. H., Mouzat, K., Duggavathi, R., Siddeek, B., Dechelotte, P., Sion, B., Veyssiere, G., Benahmed, M., and Lobaccaro, J. M. (2007) Multiple roles of the nuclear receptors for oxysterols liver X receptor to maintain male fertility. Mol. Endocrinol. 21, 1014-1027. https://doi.org/10.1210/me.2006-0277
  39. Whitehead, J. P., Molero, J. C., Clark, S., Martin, S., Meneilly, G., and James, D. E. (2001) The role of Ca2+ in insulin-stimulated glucose transport in 3T3-L1 cells. J. Biol. Chem. 276, 27816-27824. https://doi.org/10.1074/jbc.M011590200
  40. Zayzafoon, M. (2006) Calcium/calmodulin signaling controls osteoblast growth and differentiation. J. Cell Biochem. 97, 56-70. https://doi.org/10.1002/jcb.20675

Cited by

  1. TR4 Inhibits LXR-mediated Decrease of Lipid Accumulation in 3T3-L1 Adipocytes vol.31, pp.3, 2011, https://doi.org/10.5851/kosfa.2011.31.3.398
  2. Conjugated Linoleic Acid Negatively Regulates TR4 Activity in 3T3-L1 Adipocytes vol.31, pp.3, 2011, https://doi.org/10.5851/kosfa.2011.31.3.381