DOI QR코드

DOI QR Code

Estimation of Mechanical Properties of Tungsten-Fiber-Reinforced Ti-MMCs by Hot Isostatic Pressing

HIP 처리 티타늄기 MMC 의 기계적 특성평가

  • Published : 2010.04.01

Abstract

The objective of this study is the estimation of the mechanical properties of HIP-treated MMCs by an optimized manufacturing process. The Ti-MMCs were fabricated by HIP and rotary swaging (RS) for secondary processing. The Ti-MMCs with different tungsten fiber contents of 0, 6, 9, and 12 vol% were subjected to tensile tests, fatigue tests, and hardness tests. The results show that the hardness values of Ti-MMCs increased with the increasing volume percent of tungsten fibers, the tensile strength increased by approximately 50% (specific strength: 38%) at the 9 vol%. The value of tungsten-fiber orientation F affects the tensile strength. The fatigue strengths of the Ti-MMCs did not improve. HIP is a useful manufacturing method for Ti-MMCs and RS is an important process for improving fiber orientation during secondary processing.

새로운 티타늄기 MMCs(W/ Ti-6Al-4V)에 대한 기계적 특성에 대한 연구를 행하여 평가한 결과를 나타내었다. HIP(hot isostatic pressing) 제조법과 RS(Rotary Swaging) 2 차 가공을 통하여 텅스텐 섬유 함유율이 각각 6, 9, 12 vol%인 W/Ti-6Al-4V MMCs 를 제작하였으며, 경도는 기존의 Ti-6Al-4V 합금과 비교하여 20-30%, 인장강도는 50%(비강도-38%) 높은 값을 얻었다. 섬유 함유율 9vol.% 에서 가장 높은 인장 값을 나타내었으며, MMCs 에서 메트릭스와 계면 사이에 생성된 확산상에 의해서 경도 및 인장강도가 향상되었다. 또한 피로 강도를 향상 시키기 위한 방법으로 메트릭스의 질적 향상을 위한 HIP 제작조건에 대한 추가적인 연구가 필요하다.

Keywords

References

  1. Hayashi, T., 1980, "The Composite Material Engineering," pp. 1173-1181
  2. Ritchie, R.O., Dauskardt, R.H. and B.N.Cox., 1991 "Fatigue of Advanced Materials," MEPE Ltd, 315.9
  3. Ochiai, S., Hojo, M., 1995, "Analysis of the Interface Mechanics and Its Characteristics of Composite Material," JSCM, 21-2, pp. 37-46.
  4. Smith., W.F., 1994, "Structure and Properties of Engineering Alloys," McGraw-Hill Book Co.
  5. Donachie, M.J. Jr., 1988, "Titanium a Technical Guide," ASM international.
  6. Son, S., Nishida, S., Hattori, N. and Nakano, K., 2002, Fatigue Properties of Tungsten Fiber Reinforced Ti-6Al- 4V alloy by HIP Fabrication, JSME, 68-666 (A), pp. 93-98
  7. Son, S., Nishida, S., Hattori, N., Nakano, K., 2000, Fatigue Properties of Tungsten Fiber Reinforced Ti-6Al- 4V Alloy, Key Eng. Mat., Trans Tech, 183-187(2), pp. 963-968 https://doi.org/10.4028/www.scientific.net/KEM.183-187.963
  8. Nishida, S., Hayashi, K., Hattori, N., Nakano, K., Yanagida, Y., Tamasaki, H., 2000, "Mechanical Properties of MMC Based on Ti alloy," Key Eng. Mat., Trans Tech., pp. 1243-1248
  9. 1989, Titanium Material Researchers, Present Aspect of Titanium Materials Research in Japan, p. 81.
  10. Lee, D., Kim, J., Kim, S., Lee, W. and Kim, W., 1993, "Study on the Processing of Long Fiber - Reinforced Composite Materials for Thermoforming-On the Correlation Coefficient between Separation and Orientation," Trans. Of the KSME (A), Vol. 17, No. 5, pp. 1106-1111.