References
- Izquierdo-Barba, I.; Vallet-Regí, M.; Kupferschmidt, N.; Terasaki,O.; Schmidtchen, A.; Malmsten, M. Biomaterials 2009, 30,5729. https://doi.org/10.1016/j.biomaterials.2009.07.003
- Segal, E.; Perelman, L. A.; Cunin, F.; Di Renzo, F.; Devoisselle,J. M.; Li, Y. Y.; Sailor, M. J. Adv. Funct. Mater. 2007,17, 1153. https://doi.org/10.1002/adfm.200601077
- Pierce, A. L.; Sommakia, S.; Rickus, J. L.; Otto, K. J. J. Neurosci. Meth. 2009, 180, 106. https://doi.org/10.1016/j.jneumeth.2009.02.008
- Tu, Y. F.; Di, J. W.; Chen, X. J. J. Sol-Gel Sci. Technol. 2005, 33, 187. https://doi.org/10.1007/s10971-005-5613-6
- Li, T.; Yao, Z.; Ding, L.Sensor. Actuat. B 2004, 101, 155. https://doi.org/10.1016/j.snb.2004.02.047
- Kambhampati, D. K.; Jakob,T. A. M.; Robertson, J. W.; Cai, M.; Pemberton, J. E.; Knoll, W.Langmuir 2001, 17, 1169. https://doi.org/10.1021/la001250w
- Miao, Y.; Tan, S. N. Anal. Chim. Acta 2001, 437, 87. https://doi.org/10.1016/S0003-2670(01)00986-2
- Wang, B.; Zhang, J.; Dong, S. Biosens. Bioelectron.2000, 15, 397. https://doi.org/10.1016/S0956-5663(00)00096-8
- Li, J.; Chia, L. S.; Goh, N. K.; Tan, S.N. Anal. Chim. Acta 1998, 362, 203. https://doi.org/10.1016/S0003-2670(98)00064-6
- Maheswara, M.; Oh, S. H.; Kim, K.; Do, J. Y. Bull. Korean Chem. Soc. 2008, 29, 1752. https://doi.org/10.5012/bkcs.2008.29.9.1752
- Petrucci, M. G. L.; Kakkar, A. K.Chem. Mater. 1999, 11, 269. https://doi.org/10.1021/cm9804968
- Li, X.; Barua, S.; Rege, K.; Vogt, B. D. Langmuir 2008, 24, 11935. https://doi.org/10.1021/la801849n
- Cho, W. K.; Kang, S. M.; Kim, D. J.; Yang, S. H.; Choi, I. S. Langmuir2006, 22, 11208. https://doi.org/10.1021/la062191a
- Brutchey, R. L.; Morse, D. E. Chem. Rev. 2008, 108, 4915. https://doi.org/10.1021/cr078256b
- Helmecke, O.; Hirsch, A.; Behrens, P.; Menzel, H. J. Coll. Interface Sci. 2008, 321, 44. https://doi.org/10.1016/j.jcis.2008.01.006
- Coffman, E. A.; Melechko, A. V.;Allison, D. P.; Simpson, M. L.; Doktycz, M. J. Langmuir 2004,20, 8431. https://doi.org/10.1021/la048907o
- Brott, L. L.; Naik, R. R.; Pikas, D. J.; Kirkpatrick, S.M.; Tomlin, D. W.; Whitlock, P. W.; Clarson, S. J.; Stone, M. O. Nature 2001, 413, 291. https://doi.org/10.1038/35095031
- Laugel, N.; Hemmerle, J.; Porcel, C.; Voegel, J.-C.; Schaaf, P.;Ball, V. Langmuir 2007, 23, 3706. https://doi.org/10.1021/la063052w
- Yang, S. H.; Park, J. H.; Choi, I. S. Bull. Korean Chem. Soc. 2009,30, 2165. https://doi.org/10.5012/bkcs.2009.30.9.2165
- Yang, S. H.; Choi, I. S. Chem. Asian J. 2009, 4, 382. https://doi.org/10.1002/asia.200800381
- Yang, S. H.; Lee, K.-B.; Kong. B.; Kim, J.-H.; Kim, H.-S.; Choi,I. S. Angew. Chem. Int. Ed. 2009, 48, 9160. https://doi.org/10.1002/anie.200903010
- Wu, J.-C.; Wang, Y.; Chen, C.-C.; Chang, Y.-C. Chem. Mater.2008, 20, 6148. https://doi.org/10.1021/cm8017659
- Kim, D. J.; Lee, K.-B.; Lee, T. G.; Shon, H. K.; Kim, W.-J.;Paik, H.-j.; Choi, I. S. Small 2005, 1, 992. https://doi.org/10.1002/smll.200400157
- Kim, D. J.; Lee, K.B.; Chi, Y. S.; Kim, W. J.; Paik, H.-j.; Choi, I. S. Langmuir 2004,20, 7904. https://doi.org/10.1021/la048657b
- Yang, S. H.; Park, J. H.; Cho, W. K.; Lee, H.-S.; Choi, I. S. Small2009, 5, 1947. https://doi.org/10.1002/smll.200900440
- Yang, S. H.; Kang, K.; Choi, I. S. Chem. Asian J. 2008, 3, 2097. https://doi.org/10.1002/asia.200800185
- Sumper, M.; Kroger, N. J. Mater. Chem. 2004, 14, 2059. https://doi.org/10.1039/b401028k
- Sumper, M.; Lerenz, S.; Brunner, E. Angew. Chem. Int. Ed. 2003,42, 5192. https://doi.org/10.1002/anie.200352212
- Shah, R. R.; Merreceyes, D.; Husemann, M.; Rees, I.; Abbott, N.L.; Hawker, C. J.; Hedrick, J. L. Macromolecules 2000, 33, 597. https://doi.org/10.1021/ma991264c
- Min, H.; Jung, G.; Moon, D. W.; Choi, I. S.; Lee, T. G. Appl. Surf. Sci. 2008, 255, 1037. https://doi.org/10.1016/j.apsusc.2008.05.100
- Kong, B.; Kim, Y.; Choi, I. S. Bull. Korean Chem. Soc. 2008, 29, 1843. https://doi.org/10.5012/bkcs.2008.29.9.1843
- Offord, D. A.; John, C. M.;Linford, M. R.; Griffin, J. H. Langmuir 1994, 10, 883. https://doi.org/10.1021/la00015a045
- Offord,D. A.; John, C. M.; Griffin, J. H. Langmuir 1994, 10, 761. https://doi.org/10.1021/la00015a027
- Advincula, R. C.; Brittain, W. J.; Caster, K. C.; Ruhe, J. In Polymer Brushes: Synthesis, Characterization, Applications; Wiley-VCH: Weinheim, Germany, 2004.
Cited by
- Formation of thiol-functionalized silica films by layer-by-layer self-assembly and biomimetic silicification vol.19, pp.5, 2011, https://doi.org/10.1007/s13233-011-0512-x
- Structure Modulation of Silica Microspheres in Bio-Inspired Silicification: Effects of TEOS Concentration vol.6, pp.8, 2011, https://doi.org/10.1002/asia.201100265
- Cytocompatible Encapsulation of Individual Chlorella Cells within Titanium Dioxide Shells by a Designed Catalytic Peptide vol.28, pp.4, 2012, https://doi.org/10.1021/la203667z
- Artificial Spores: Cytocompatible Encapsulation of Individual Living Cells within Thin, Tough Artificial Shells vol.9, pp.2, 2012, https://doi.org/10.1002/smll.201202174
- Bio-Inspired Formation of Silica Thin Films: From Solid Substrates to Cellular Interfaces vol.2015, pp.27, 2015, https://doi.org/10.1002/ejic.201500308
- Hierarchically Branched Nanostructures in Biomimetic Silica Films, Controlled by Counteranion-Exchange vol.60, pp.6, 2016, https://doi.org/10.5012/jkcs.2016.60.6.399
- Bioinspired Functionalization of Silica‐Encapsulated Yeast Cells vol.123, pp.27, 2011, https://doi.org/10.1002/ange.201102030
- Bioinspired Functionalization of Silica‐Encapsulated Yeast Cells vol.50, pp.27, 2011, https://doi.org/10.1002/anie.201102030
- Biomimetic silica nanostructures on the surface, controlled by polyvalent counteranions vol.23, pp.None, 2010, https://doi.org/10.1016/j.solidstatesciences.2013.06.004