References
- Wong, C.-H.; Whitesides, G. M. Enzymes in Synthetic Organic Chemistry; Pergamon: Oxford, UK, 1994.
- Drauz, K.; Waldmann, H. Enzyme Catalysis in Organic Synthesis; VCH: Weinheim, Germany, 1995; Vols. I and II.
- Bornscheuer, U. T.; Kazlauskas, R. J. Hydrolases in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 1999.
- Koskinen, A. M. P.; Klivanov, A. M. Enzymatic Reactions in Organic Media; Blackie Academic & Professional: Glasgow, Scotland, 1996.
- Kim, M.-J.; Ahn, Y.; Park, J. Curr. Opin. Biotechnol. 2002, 13, 578. https://doi.org/10.1016/S0958-1669(02)00347-6
- Kim, M.-J.; Ahn, Y.; Park, J. Bull. Korean Chem. Soc. 2005, 26, 515. https://doi.org/10.5012/bkcs.2005.26.4.515
- Ahn, Y.; Ko, S.-B.; Kim, M.-J.; Park, J. Coord. Chem. Rev. 2008, 252, 647. https://doi.org/10.1016/j.ccr.2007.09.009
- Dresselhaus, M. S.; Dresselhaus G.; Eklund, P. C. Science of Fullerenes and Carbon Nanotubes; Academic Press: San Diego, 1996; pp 1-985.
- Chen, R. J.; Zhang, Y.; Wang, D.; Dai, H. J. Am. Chem. Soc. 2001, 123, 3838. https://doi.org/10.1021/ja010172b
- Huang, W.; Taylor, S.; Fu, K.; Lin, Y.; Zhang, D.; Hanks, T. W.; Rao, A. M.; Sun, Y.-P. Nano Lett. 2002, 2, 311. https://doi.org/10.1021/nl010095i
- Azamian, B. R.; Davis, J. J.; Coleman, K. S.; Bagshaw, C. B.; Green, M. L. H. J. Am. Chem. Soc. 2002, 124, 12664. https://doi.org/10.1021/ja0272989
- Rege, K.; Raravikar, N. R.; Kim, D.-Y.; Schadler, L. S.; Ajayan, P. M.; Dordick, J. S. Nano Lett. 2003, 3, 829. https://doi.org/10.1021/nl034131k
- Jiang, K.; Schadler, L. S.; Siegel, R. W.; Zhang, X.; Zhang, H.; Terrones, M. Mater. Chem. 2004, 14, 37. https://doi.org/10.1039/b310359e
- Yim, T.-J.; Liu, J.; Lu, Y.; Kane, R. S.; Dordick, J. S. J. Am. Chem. Soc. 2005, 127, 12200. https://doi.org/10.1021/ja0541581
- Gomez, J. M.; Romero, M. D.; Fernandez, T. M. Catal. Lett. 2005, 101, 275. https://doi.org/10.1007/s10562-005-4904-4
- Prakash, R.; Superfine, R.; Falvo, M. R. Appl. Phys. Lett. 2006, 88, 063102. https://doi.org/10.1063/1.2171802
- Heering, H. A.; Williams, K. A.; de Vries, S.; Dekker, C. Chem. Phys. Chem. 2006, 7, 1705.
- Reich, S.; Thomsen, C.; Ordejon, P. Phys.Rev. B 2002, 65, 155411. https://doi.org/10.1103/PhysRevB.65.155411
- Girifalco, L.; Hodak, M.; Lee, R. S. Phys. Rev. B 2000, 62, 13104. https://doi.org/10.1103/PhysRevB.62.13104
- Fukushima, T.; Kosaka, A.; Ishimura, Y.; Yamamoto, T.; Takigawa, T.; Ishii, N.; Aida, T. Science 2003, 300, 2072. https://doi.org/10.1126/science.1082289
- Price, B. K.; Hudson, J. L.; Tour, J. M. J. Am. Chem. Soc. 2005, 127, 14867. https://doi.org/10.1021/ja053998c
- Kragl, U.; Eckstein, M.; Kaftzik, N. Curr. Opin. Biotechnol. 2002, 13, 565. https://doi.org/10.1016/S0958-1669(02)00353-1
- Park, S.; Kazlauskas, R. J. Curr. Opin. Biotechnol. 2003, 14, 432. https://doi.org/10.1016/S0958-1669(03)00100-9
- van Rantwijk, F.; Sheldon, K. R. A. Chem. Rev. 2007, 107, 2757. https://doi.org/10.1021/cr050946x
- Cantone, S.; Hanefeld, U.; Basso, A. Green Chem. 2007, 9, 954. https://doi.org/10.1039/b618893a
- Lyu, S. C.; Liu, B. C.; Lee, T. J.; Liu, Z. Y.; Yang, C. W.; Park, C. Y.; Lee, C. J. Chem. Commun. 2003, 734.
- Liu, B. C.; Lyu, S. C.; Jung, S. I.; Kang, H. K.; Yang, C.-W.; Park, J. W.; Park, C. Y.; Lee, C. J. Chem. Phys. Lett. 2004, 383, 104. https://doi.org/10.1016/j.cplett.2003.10.134
Cited by
- Reversible immobilization of glucoamylase onto magnetic carbon nanotubes functionalized with dendrimer vol.91, pp.3, 2011, https://doi.org/10.1007/s00253-011-3299-y
- Immobilization of laccase on carbon nanomaterials vol.29, pp.10, 2012, https://doi.org/10.1007/s11814-012-0024-1
- Production of lipase from Pseudomonas gessardii using blood tissue lipid and thereof for the hydrolysis of blood cholesterol and triglycerides and lysis of red blood cells vol.35, pp.6, 2012, https://doi.org/10.1007/s00449-011-0673-1
- Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production vol.97, pp.1, 2013, https://doi.org/10.1007/s00253-012-4535-9
- Immobilization and enhanced catalytic activity of lipase on modified MWCNT for oily wastewater treatment vol.35, pp.5, 2016, https://doi.org/10.1002/ep.12375
- Recent trends in nanomaterials immobilised enzymes for biofuel production vol.36, pp.1, 2016, https://doi.org/10.3109/07388551.2014.928811
- A review on the important aspects of lipase immobilization on nanomaterials vol.64, pp.4, 2017, https://doi.org/10.1002/bab.1515
- Immobilization of enzymes onto carbon nanotubes vol.65, pp.4, 2011, https://doi.org/10.2298/HEMIND110330028P
- Nano-Immobilized Biocatalysts for Biodiesel Production from Renewable and Sustainable Resources vol.8, pp.2, 2018, https://doi.org/10.3390/catal8020068
- SE3-PB isolated from lipid-rich wastewater pp.1532-2297, 2018, https://doi.org/10.1080/10826068.2018.1514517
- A newly high alkaline lipase: an ideal choice for application in detergent formulations vol.10, pp.None, 2010, https://doi.org/10.1186/1476-511x-10-221
- Evolution towards the utilisation of functionalised carbon nanotubes as a new generation catalyst support in biodiesel production: an overview vol.3, pp.24, 2010, https://doi.org/10.1039/c3ra22945a
- Screening and Characterization of Halophilic Bacteria With Industrial Enzymes from Salt Lake Razazah, Karbala, Iraq vol.14, pp.2, 2017, https://doi.org/10.13005/bbra/2476
- Immobilization of Lipase Enzyme Carbon Nanotubes via Adsorption vol.495, pp.None, 2010, https://doi.org/10.1088/1757-899x/495/1/012055
- Purification effect and microorganisms diversity in an Acorus calamus constructed wetland on petroleum-containing wastewater vol.32, pp.1, 2010, https://doi.org/10.1080/26395940.2019.1711200