DOI QR코드

DOI QR Code

A Convenient, High Yielding Cleavage of the Thiocarbonyl Group in Xanthates

  • Quiclet-Sire, Beatrice (Laboratoire de Synthese Organique, CNRS UMR) ;
  • Zard, Samir Z. (Laboratoire de Synthese Organique, CNRS UMR)
  • Published : 2010.03.20

Abstract

Keywords

References

  1. Zard, S. Z. Angew. Chem., Int. Ed. Engl. 1997, 36, 673-685.
  2. Zard, S. Z. In Radicals in Organic Synthesis; Renaud, P., Sibi, M. P., Eds; Wiley-VCH: Weinheim, 2001; Vol. 1, pp 90-108.
  3. Quiclet-Sire, B.; Zard, S. Z. Chem. Eur. J. 2006, 12, 6002-6016. https://doi.org/10.1002/chem.200600510
  4. Quiclet-Sire, B.; Zard, S. Z. Top. Curr. Chem. 2006, 264, 201-236. https://doi.org/10.1007/128_029
  5. Zard, S. Z. Aust. J. Chem. 2006, 59, 663-668. https://doi.org/10.1071/CH06263
  6. Zard, S. Z. Org. Biomol. Chem. 2007, 5, 205-213. https://doi.org/10.1039/b615592h
  7. Corsaro, A.; Pistara, V. Tetrahedron 1998, 54, 15027-15062. https://doi.org/10.1016/S0040-4020(98)00880-1
  8. Durand, T.; Guy, A.; Vidal, J.-P.; Rossi, J.-C. J. Org. Chem. 2002, 67, 3615-3624. https://doi.org/10.1021/jo0109624
  9. Demyuck, C.; Thuillier, A. Bull. Soc. Chim. Fr. 1969, 2434-2438.
  10. Cristol, S.; Seapy, D. G. J. Org. Chem. 1982, 47, 132-136. https://doi.org/10.1021/jo00340a028
  11. Lieser, T.; Leckzyck, E. Ann. 1935, 519, 279-291.
  12. Makens, R. F. J. Am. Chem. Soc. 1935, 57, 405-406. https://doi.org/10.1021/ja01306a005
  13. Furuta, S.; Kuroboshi, M.; Hiyama, T. Bull. Chem. Soc. Jpn. 1999, 72, 805-820. https://doi.org/10.1246/bcsj.72.805
  14. Jorgensen, K. A.; Ghattas, A.; Lawesson, S.-O. Tetrahedron 1982, 38, 1163-1168. https://doi.org/10.1016/0040-4020(82)85099-0
  15. Back, T. G.; Barton, D. H. R.; Britten-Kelly, M. R.; Guziec Jr, F. S. J. Chem. Soc., Chem. Commun. 1975, 539
  16. Back, T. G.; Barton, D. H. R.; Britten-Kelly, M. R.; Guziec Jr, F. S. J. Chem. Soc., Perkin Trans. 1 1976, 2079-2089.
  17. Elsaesser, A.; Sudermeyer, W.; Stephenson, D. S. Chem. Ber. 1985, 118, 116-123. https://doi.org/10.1002/cber.19851180112
  18. Le Nocher, A.-M.; Metzner, P. Tetrahedron Lett. 1991, 32, 747-750. https://doi.org/10.1016/S0040-4039(00)74874-X
  19. Marriere, E.; Chevrie, D.; Metzner, P. J. Chem. Soc., Perkin Trans. 1 1997, 2019-2020.
  20. Ohno, A.; Nakamura, K.; Nakazima, Y.; Oka, S. Chem. Lett. 1975, 983-984.
  21. Rao, V. J.; Muthuramu, K.; Ramamurthy, V. J. Org. Chem. 1982, 47, 127-131. https://doi.org/10.1021/jo00340a027
  22. Cussans, N. J.; Ley, S. V.; Barton, D. H. R. J. Chem. Soc., Perkin Trans. 1 1980, 1650-1653. https://doi.org/10.1039/p19800001650
  23. Barton, D. H. R.; Finet, J.-P.; Thomas, M. Tetrahedron 1986, 42, 2319-2324. https://doi.org/10.1016/S0040-4020(01)90612-X
  24. Barton, D. H. R.; Crich, D.; Löbberding, A.; Zard, S. Z. Tetrahedron 1986, 42, 2329-2338. https://doi.org/10.1016/S0040-4020(01)90614-3
  25. Barton, D. H. R.; Finet, J.-P.; Thomas, M. Z. Tetrahedron 1986, 42, 2319-2324. https://doi.org/10.1016/S0040-4020(01)90612-X
  26. Alameda-Angulo, C.; Quiclet-Sire, B.; Zard, S. Z. Tetrahedron Lett. 2006, 47, 913-916. https://doi.org/10.1016/j.tetlet.2005.11.154
  27. Batanero, B.; Picazo, O.; Barba, F. J. Org. Chem. 2001, 66, 320-322. https://doi.org/10.1021/jo001206l
  28. Zwannenburg, B.; Janssen, W. A. Synthesis 1973, 617-620.
  29. Ramnath, N.; Ramesh, V.; Ramamurthy, V. J. Chem. Soc., Chem. Commun. 1981, 112-114.
  30. Tabuchi, T.; Nojima, M.; Kusabayashi, S. J. Chem. Soc., Chem. Commun. 1990, 625-629
  31. Tabuchi, T.; Nojima, M.; Kusabayashi, S. J. Chem. Soc., Perkin Trans. 1 1991, 3043-3046.
  32. Holm, S.; Boerma, J. A.; Nilsson, N. H.; Senning, A. Chem. Ber. 1976, 109, 1069-1074. https://doi.org/10.1002/cber.19761090328
  33. Barton, D. H. R.; Wozniak, J.; Zard, S. Z. Tetrahedron 1989, 45, 3741-3754. https://doi.org/10.1016/S0040-4020(01)89235-8
  34. Reichardt, C. Org. Process Res. Dev. 2007, 11, 105-113. https://doi.org/10.1021/op0680082
  35. Claudia, C.; Mincione, E.; Saladino, R.; Nicoletti, R. Tetrahedron 1994, 50, 3259-3272. https://doi.org/10.1016/S0040-4020(01)81121-2
  36. Handbook of RAFT Polymerization; Barner-Kowollik, C., Ed.; Wiley-VCH: Weinheim, 2008.
  37. Moad, G.; Rizzardo, E.; Thang, S. H. Aust. J. Chem. 2006, 59, 669-692. https://doi.org/10.1071/CH06250
  38. Moad, G.; Rizzardo, E.; Thang, S. H. Aust. J. Chem. 2005, 58, 379-410. https://doi.org/10.1071/CH05072
  39. Perrier, S.; Takolpuckdee, P. J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 5347-5397. https://doi.org/10.1002/pola.20986
  40. Zard, S. Z.; Sire, B.; Jost, P. Int. Pat. WO 2005040233 2005.

Cited by

  1. Radical-induced oxidation of RAFT agents-A kinetic study vol.49, pp.6, 2011, https://doi.org/10.1002/pola.24554
  2. Living Radical Polymerization by the RAFT Process ? A Third Update vol.65, pp.8, 2012, https://doi.org/10.1071/CH12295
  3. A Convenient Metal-Free Reagent for the Generation and Capture of Trifluoromethanethiol vol.15, pp.22, 2013, https://doi.org/10.1021/ol403038f
  4. Novel Route to Triethylsilyl-Substituted Cyclopropanes vol.16, pp.23, 2014, https://doi.org/10.1021/ol503081b
  5. Continuous Flow Aminolysis of RAFT Polymers Using Multistep Processing and Inline Analysis vol.47, pp.23, 2014, https://doi.org/10.1021/ma501628f
  6. -butyl acrylate) Latexes by Ozonolysis vol.36, pp.14, 2015, https://doi.org/10.1002/marc.201500115
  7. ChemInform Abstract: A Convenient, High Yielding Cleavage of the Thiocarbonyl Group in Xanthates. vol.41, pp.30, 2010, https://doi.org/10.1002/chin.201030036
  8. End‐functional polymers, thiocarbonylthio group removal/transformation and reversible addition–fragmentation–chain transfer (RAFT) polymerization vol.60, pp.1, 2011, https://doi.org/10.1002/pi.2988
  9. Radical Solution to the Alkylation of the Highly Base-Sensitive 1,1-Dichloroacetone. Application to the Synthesis of Z-Alkenoates and E,E-Dienoates vol.17, pp.21, 2010, https://doi.org/10.1021/acs.orglett.5b02681
  10. The Xanthate Route to Ketones: When the Radical Is Better than the Enolate vol.51, pp.7, 2010, https://doi.org/10.1021/acs.accounts.8b00201
  11. Discovery of the RAFT/MADIX Process: Mechanistic Insights and Polymer Chemistry Implications vol.53, pp.19, 2020, https://doi.org/10.1021/acs.macromol.0c01441