DOI QR코드

DOI QR Code

Medium Optimization for Pediocin SA131 Production by Pediococcus pentosaceus SA131 against Bovine Mastitis Using Response Surface Methodology

  • 발행 : 2010.02.28

초록

Pediococcus pentosaceus SA131 was isolated from jeotgal, is the bacteriocin producer against bovine mastitis pathogens, Streptococcus uberis E290, Enterococcus gallinarum E362, and Staphylococcus epidermidis ATCC 12228. The medium composition for pediocin SA131 production by P. pentosaceus SA131 was optimized using response surface methodology. Component of medium was studied as carbon source (glucose, fructose, lactose, glycerol, sucrose, maltose, and mannitol), nitrogen source (beef extract, yeast extract, peptone, malt extract, and tryptone), mineral and surfactant ($MgSO_4$, $KH_2PO_4$, $(NH_4)_2SO_4$, $MnSO_4$, NaCl, sodium acetate, and Tween 80). Through one factor-at-a-time experiment, glucose, fructose, yeast extract, malt extract, NaCl, $MgSO_4$, and Tween 80 were determined as the good ingredient. The effects of major factors for pediocin SA131 production were investigated by two-level fractional factorial designs (FFD). By a $2^4$ FFD, fructose, yeast extract, and $MnSO_4$ were found to be the important factors for the bacteriocin production. Subsequently, a $2^3$ central composite design (CCD) was adopted to derive a statistical model for optimizing the composition of the fermentation medium. The estimated optimum composition for the production of pediocin SA131 by P. pentosaceus SA131 was as follows; 0.13% fructose, 1% glucose, 1.8% yeast extract, 2.58% $MnSO_4$, 0.2% NaCl, and 0.2% Tween 80. The pediocin production under optimized medium was increased to 1,000 AU/mL, compared to the 400 AU/mL in MRS medium.

키워드

참고문헌

  1. Anastasiadou, S., Papagianni, M., Ambrosiadis, I., and Koidis, P. (2008) Rapid quantifiable assessment of nutritional parameters influencing pediocin production by Pediococcus acidilactici NRRL B5627. Bioresource Technol. 99, 6646-6650. https://doi.org/10.1016/j.biortech.2007.11.068
  2. Anthony, T., Rajesh, T., Kayalvizhi, N., and Gunasekaran, P. (2009) Influence of medium components and fermentation conditions on the production of bacteriocin(s) by Bacillus licheniformis AnBa9. Bioresource Technol. 100, 872-877 https://doi.org/10.1016/j.biortech.2008.07.027
  3. Barboza-Corona, J. E., Fuente-Salcido, N., Alva-Murillo, N., Ochoa-Zarzosa, A., and Lopez-Meza, J. E. (2009) Activity of bacteriocins synthesized by Bacillus thuringiensis against Staphylococcus aureus isolates associated to bovine mastitis. Vet. Microbiol. 138, 179-183. https://doi.org/10.1016/j.vetmic.2009.03.018
  4. Cheigh, C. I., Choi, H. J., Park, H., Kim, S. B., Kook, M. C., Kim, T. S., Hwang, J. K., and Pyun, Y. R. (2002) Influence of growth conditions on the production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from Kimchi. J. Biotechnol. 95, 225-235. https://doi.org/10.1016/S0168-1656(02)00010-X
  5. Choi, H. J., Cheigh, C. I., Kim, S. B., and Pyun, Y. R. (2000) Production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from Kimchi. J. Appl. Microbiol. 88, 563-571. https://doi.org/10.1046/j.1365-2672.2000.00976.x
  6. Coelho, M. L. V., Nascimento, J. S., Fagundes, P. C., Madureira, D. J., Oliveira, S. S., Brito, M. A. V. P., and Bastos, M. C. F. (2007) Activity of staphylococcal bacteriocins against Staphylococcus aureus and Streptoccus agalactiae involved in bovine mastitis. Res. Microbiol. 158, 625-630. https://doi.org/10.1016/j.resmic.2007.07.002
  7. Coenye, T. and Vandamme, P. (2003) Extracting phylogenetic information from whole-genome sequencing projects: the lactic acid bacteria as a test case, Microbiology 149, 3507-3517. https://doi.org/10.1099/mic.0.26515-0
  8. Delgado, A., Lopez, F. N. A., Brito, D., Peres, C., Fevereiro, P., and Garrido-Fernandez, A. (2007) Optimum bacteriocin production by Lactobacillus plantarum 17.2b requires absence of NaCl and apparently follows a mixed metabolite kinetics. J. Biotechnol. 130, 193-201. https://doi.org/10.1016/j.jbiotec.2007.01.041
  9. He, G. Q., Kong, Q., and Ding, L. X. (2004) Response surface methodology for optimizing the fermentation medium of Clostridium butyricum. Lett. Appl. Microbiol. 39, 363-368. https://doi.org/10.1111/j.1472-765X.2004.01595.x
  10. Kim, H., Eom, H. J., Lee, J. S. Han, J. S., and Han, N. S. (2004) Statistical optimization of medium composition for growth of Leuconostoc citreum. Biotechnol. Bioproc. E. 9, 278-284. https://doi.org/10.1007/BF02942344
  11. Kim, M. H., Kong, Y. J., Baek, H., and Hyun, H. H. (2006) Optimization of culture conditions and medium composition for the production of micrococcin GO5 by Micrococcus sp. GO5. J. Biotechnol. 121, 54-61. https://doi.org/10.1016/j.jbiotec.2005.06.022
  12. Lee, N. K., Park, Y. L., Kim, H. W., Park, Y. H., Rhim, S. L., Kim, J. M., Kim, J. M., Nam, H. M., Jung, S. C., and Paik, HD. (2008) Purification and characterization of lacticin NK34 produed by Lactoccous lactis NK34 against bovine mastitis. Korean J. Food Sci. Ani. Resour. 28, 457-462. https://doi.org/10.5851/kosfa.2008.28.4.457
  13. Li, C., Bai, J., Cai, Z., and Ouyang, F. (2002) Optimization of a cultural medium for bacteriocin production by Lactococcus lactis using response surface methodology. J. Biotechnol. 93, 27-34. https://doi.org/10.1016/S0168-1656(01)00377-7
  14. Liu, B. L. and Tzeng, Y. M. (1998) Optimization of growth medium for the production of spores from Bacillus thuringiensis using response surface methodology. Bioprocess Eng. 18, 413-418.
  15. Miyoshi, A., Rochat, T., Gratadoux, J. J., Le Loir, Y., Oliverira, S. C., Langella, P., and Azevedo, V. (2003) Oxidative stress in Lactococcus lactis. Genet. Mol. Res. 2, 348-359.
  16. Nascimento, J. S., Fagundes, P. C., Brito, M. A. V. P., Santos, K. R. N., and Bastos, M. C. F. (2005) Production of bacteriocins by coagulase-negative staphylococci involved in bovine mastitis. Vet. Microbiol. 106, 61-71. https://doi.org/10.1016/j.vetmic.2004.10.014
  17. Nel, H. A., Bauer, R., Vandamme, E. J., and Dicks, L. M. T. (2001) Growth optimization of Pediococcus darmnosus NCFB1832 and the influence of pH and nutrients on the production of pediocin PD-1. J. Appl. Microbiol. 91, 1131-1138. https://doi.org/10.1046/j.1365-2672.2001.01486.x
  18. Ochoa-Zarsoza, A., Loeza-Angeles, H., Sahrero-Cisneros, E., Villagomez-Gomez, E. Lara-Zarate, L., and Lopez-Meza, J. E. (2008) Antibacterial activity of thionin Thi2.1 from Arabidopsis thaliana expressed by bovine endothelial cells against Staphylococcus aureus isolates from bovine mastitis. Vet. Microbiol. 127, 425-430. https://doi.org/10.1016/j.vetmic.2007.08.031
  19. Purama, R. K. and Goyal, A. (2008) Screening and optimization of nutritional factors for higher dextransucrase production by Leuconostoc mesenteroides NRRL B-640 using statistical approach. Bioresource Technol. 99, 7108-7114 https://doi.org/10.1016/j.biortech.2008.01.032
  20. Verellen, T. L. J., Bruggeman, G., Reenen, C. A. V., Dicks, L. M. T., and Vandamme, E. J. (1998) Fermentation optimization of plantaricin 423, a bacteriocin produced by Lactobacillus plantarum 423. J. Ferment. Bioeng. 86, 174-179. https://doi.org/10.1016/S0922-338X(98)80057-3
  21. Wang, Z. W. and Liu, X. L. (2008) Medium optimization for antifungal active substances production from a newly isolated Paenibacillus sp. using surface methodology. Bioresource Technol. 99, 8245-8251. https://doi.org/10.1016/j.biortech.2008.03.039

피인용 문헌

  1. Bacteriocin Production by a Marine Strain of Bacills sp. Sh10: Isolation, Screening and Optimization of Culture Condition vol.13, pp.6, 2014, https://doi.org/10.3923/biotech.2014.273.281
  2. Probiotic Properties of Pediococcus pentosaceus SH-10 Isolated from the Hard Clam Meretrix meretrix Shikhae vol.44, pp.6, 2011, https://doi.org/10.5657/KFAS.2011.0605