International Journal of Fuzzy Logic and Intelligent Systems, vol. 10, no. 4, December 2010, pp. 303-307 DOI: 10.5391/IJFIS.2010.10.4.303

On Fuzzy Weak *r*-minimal Continuity Between Fuzzy Minimal Spaces and Fuzzy Topological Spaces

Won Keun Min

Department of Statics, Kangwon National University, Chuncheon, 200-701, Korea

Abstract

In this paper, we introduce the concept of fuzzy weakly r-minimal continuous function between a fuzzy r-minimal space and a fuzzy topological space. We investigate characterizations and some properties for the continuity.

Key Words : *r*-minimal structure, fuzzy *r*-minimal continuous, fuzzy weakly *r*-minimal continuous

1. Introduction

The concept of fuzzy set was introduced by Zadeh [12]. Chang [2] defined fuzzy topological spaces using fuzzy sets. In [3], Chattopadhyay, Hazra and Samanta introduced a smooth topological space which is a generalization of fuzzy topological space. In [11], Yoo et al. introduced the concept of fuzzy r-minimal space which is an extension of the smooth topological space. The concept of fuzzy r-M continuity was also introduced and investigated in [11]. In [9], the author introduced the concepts of fuzzy r-minimal continuous function and fuzzy r-minimal open function between fuzzy r-minimal spaces and fuzzy topological spaces, and investigate characterizations for such functions. The purpose of this paper is to generalize the concept of fuzzy r-minimal continuous function. So, in this paper, we introduce the concept of fuzzy weakly r-minimal continuous function between a fuzzy r-minimal space and a fuzzy topological space. We investigate characterizations and some properties for the continuity.

2. Preliminaries

Let I be the unit interval [0, 1] of the real line. A member A of I^X is called a fuzzy set of X. By $\tilde{\mathbf{0}}$ and $\tilde{\mathbf{1}}$ we denote constant maps on X with value 0 and 1, respectively. For any $A \in I^X$, A^c denotes the complement $\tilde{\mathbf{1}} - A$. All other notations are standard notations of fuzzy set theory.

A fuzzy point x_{α} in X is a fuzzy set x_{α} defined as follows

$$x_{\alpha}(y) = \begin{cases} \alpha, & \text{if } y = x, \\ 0, & \text{if } y \neq x. \end{cases}$$

A fuzzy point x_{α} is said to belong to a fuzzy set A in X, denoted by $x_{\alpha} \in A$, if $\alpha \leq A(x)$ for $x \in X$. A fuzzy set A in X is the union of all fuzzy points which belong to A.

Let
$$f: X \to Y$$
 be a function and $A \in I^X$ and $B \in I^Y$.

Then f(A) is a fuzzy set in Y, defined by

$$f(A)(y) = \begin{cases} \sup_{z \in f^{-1}(y)} A(z), & \text{if } f^{-1}(y) \neq \emptyset, \\ 0, & \text{otherwise }, \end{cases}$$

for $y \in Y$, and $f^{-1}(B)$ is a fuzzy set in X, defined by $f^{-1}(B)(x) = B(f(x)), x \in X$.

A fuzzy topology (or smooth topology) [3, 10] on X is a map $\mathcal{T}: I^X \to I$ which satisfies the following properties: (1) $\mathcal{T}(\tilde{0}) = \mathcal{T}(\tilde{1}) = 1$. (2) $\mathcal{T}(A_1 \cap A_2) \geq \mathcal{T}(A_1) \wedge \mathcal{T}(A_2)$ for $A_1, A_2 \in I^X$. (3) $\mathcal{T}(\cup A_i) \geq \wedge \mathcal{T}(A_i)$ for $A_i \in I^X$.

The pair (X, \mathcal{T}) is called a *fuzzy topological space* [10]. $A \in I^X$ is said to be *fuzzy r-open* (resp., *fuzzy r-closed*) [6] if $\mathcal{T}(A) \geq r$ (resp., $\mathcal{T}(A^c) \geq r$).

The *r*-closure of A, denoted by cl(A, r), is defined as $cl(A, r) = \cap \{B \in I^X : A \subseteq B \text{ and } B \text{ is fuzzy } r\text{-closed}\}.$

The *r*-interior of A, denoted by int(A, r), is defined as $int(A, r) = \bigcup \{B \in I^X : B \subseteq A \text{ and } B \text{ is fuzzy } r \text{-open} \}.$

Definition 2.1. Let A be a fuzzy set in a fuzzy topological space (X, σ) . Then A is said to be

(1) fuzzy r-semiopen [7] if there is a fuzzy r-open set B in X such that $B \subseteq A \subseteq cl(B, r)$,

(2) fuzzy r-preopen [6] if $A \subseteq int(cl(A, r), r)$,

(3) fuzzy r-regular open (resp., fuzzy r-regular closed)

[8] if A = int(cl(A, r), r) (resp., A = cl(int(A, r), r)), (4) fuzzy r- β -open [1] if $A \subseteq cl(int(cl(A, r), r), r)$.

Definition 2.2 ([11]). Let X be a nonempty set and $r \in (0,1] = I_0$. A fuzzy family $\mathcal{M} : I^X \to I$ on X is said to have a *fuzzy r-minimal structure* if the family

$$\mathcal{M}_r = \{ A \in I^X \mid \mathcal{M}(A) \ge r \}$$

contains $\mathbf{\tilde{0}}$ and $\mathbf{\tilde{1}}.$

Manuscript received Jun. 28. 2010; revised . Aug. 2, 2010; accepted Dec. 1, 2010

Then the (X, \mathcal{M}) is called a *fuzzy r-minimal space* (simply *r*-FMS) if \mathcal{M} has a fuzzy *r*-minimal structure. Every member of \mathcal{M}_r is called a *fuzzy r-minimal open* set. A fuzzy set A is called a *fuzzy r-minimal closed* set if the complement of A (simply, A^c) is a fuzzy *r*-minimal open set.

Let (X, \mathcal{M}) be an *r*-FMS and $r \in I_0$. The fuzzy *r*-minimal closure and the fuzzy *r*-minimal interior of A [11], denoted by mC(A, r) and mI(A, r), respectively, are defined as

 $mC(A, r) = \cap \{B \in I^X : B^c \in \mathcal{M}_r \text{ and } A \subseteq B\},\$ $mI(A, r) = \cup \{B \in I^X : B \in \mathcal{M}_r \text{ and } B \subseteq A\}.$

Theorem 2.3 ([11]). Let (X, \mathcal{M}) be an *r*-FMS and A, B in I^X .

(1) $mI(A,r) \subseteq A$ and if A is a fuzzy r-minimal open set, then mI(A,r) = A.

(2) $A \subseteq mC(A, r)$ and if A is a fuzzy r-minimal closed set, then mC(A, r) = A.

(3) If $A \subseteq B$, then $mI(A,r) \subseteq mI(B,r)$ and $mC(A,r) \subseteq mC(B,r)$.

(4) $mI(A,r) \cap mI(B,r) \supseteq mI(A \cap B,r)$ and $mC(A,r) \cup mC(B,r) \subseteq mC(A \cup B,r)$.

(5) mI(mI(A,r),r) = mI(A,r) and mC(mC(A,r),r) = mC(A,r).

(6) $\tilde{\mathbf{1}} - mC(A, r) = mI(\tilde{\mathbf{1}} - A, r)$ and $\tilde{\mathbf{1}} - mI(A, r) = mC(\tilde{\mathbf{1}} - A, r)$.

Definition 2.4 ([9]). Let (X, \mathcal{M}_X) be an *r*-FMS and (Y, σ) a fuzzy topological space. Then $f : X \to Y$ is said to be *fuzzy r-minimal continuous* if for every fuzzy *r*-open set A in Y, $f^{-1}(A)$ is fuzzy *r*-minimal open in X.

Theorem 2.5 ([9]). Let $f : X \to Y$ be a function between an *r*-FMS (X, \mathcal{M}_X) and a fuzzy topological space (Y, σ) . Then we have the following:

(1) f is fuzzy r-minimal continuous.

(2) $f^{-1}(B)$ is a fuzzy *r*-minimal closed set for each fuzzy *r*-closed set *B* in *Y*.

(3) $f(mC(A, r)) \subseteq cl(f(A), r)$ for $A \in I^X$. (4) $mC(f^{-1}(B), r) \subseteq f^{-1}(cl(B, r))$ for $B \in I^Y$. (5) $f^{-1}(int(B, r)) \subseteq mI(f^{-1}(B), r)$ for $B \in I^Y$.

Then $(1) \Leftrightarrow (2) \Rightarrow (3) \Leftrightarrow (4) \Leftrightarrow (5)$.

3. Fuzzy weakly *r*-minimal continuous function

Definition 3.1. Let (X, \mathcal{M}_X) be an *r*-FMS and (Y, σ) a fuzzy topological space. Then $f : X \to Y$ is said to be *fuzzy weakly r-minimal continuous* if for each fuzzy point x_{α} and for each fuzzy *r*-open set *V* with $f(x_{\alpha}) \in V$, there exists a fuzzy *r*-minimal open set *U* such that $x_{\alpha} \in U$ and $f(U) \subseteq cl(V, r)$.

Remark 3.2. Let $f : X \to Y$ be a function between an r-FMS (X, \mathcal{M}_X) and a fuzzy topological space (Y, σ) . Then every fuzzy r-minimal continuous mapping f is clearly fuzzy weakly r-minimal continuous but the converse is not always true as shown in the next example.

Example 3.3. Let X = I and let us consider two fuzzy sets A, B defined as

$$A(x) = \frac{1}{2}x, \ x \in I;$$

$$B(x) = -\frac{1}{2}(x-1), \ x \in I.$$

Consider a fuzzy family

$$\mathcal{M}_X(U) = \begin{cases} \frac{1}{2}, & \text{if } U = \tilde{\mathbf{0}}, \tilde{\mathbf{1}}, \\ \frac{2}{3}, & \text{if } U = A, B, \\ 0, & \text{otherwise}, \end{cases}$$

and a fuzzy topology

$$\sigma(U) = \begin{cases} 1, & \text{if } U = \tilde{\mathbf{0}}, \tilde{\mathbf{1}}, A, B, \\ \frac{1}{3}, & \text{if } U = A \cap B, A \cup B, \\ 0, & \text{otherwise.} \end{cases}$$

Then the identity function $f : (X, \mathcal{M}_X) \to (X, \sigma)$ is fuzzy weakly $\frac{1}{3}$ -minimal continuous but not fuzzy $\frac{1}{3}$ -minimal continuous.

Theorem 3.4. Let $f : X \to Y$ be a function between an *r*-FMS (X, \mathcal{M}_X) and a fuzzy topological space (Y, σ) . Then the following statements are equivalent:

(1) f is fuzzy weakly r-minimal continuous.

(2) $f^{-1}(B) \subseteq mI(f^{-1}(cl(B,r)), r)$ for each fuzzy *r*-open set *B* of *Y*.

(3) $mC(f^{-1}(int(F,r)), r) \subseteq f^{-1}(F)$ for each fuzzy *r*-closed set *F* in *Y*.

(4) $mC(f^{-1}(int(cl(B,r),r)),r) \subseteq f^{-1}(cl(B,r))$ for each $B \in I^Y$.

(5) $f^{-1}(int(B,r)) \subseteq mI(f^{-1}(cl(int(B,r),r)),r)$ for each $B \in I^Y$.

(6) $mC(f^{-1}(V), r) \subseteq f^{-1}(cl(V, r))$ for each fuzzy ropen set V in Y.

Proof. (1) \Rightarrow (2) Let *B* be a fuzzy *r*-open set in *Y*. Since *f* is fuzzy weakly *r*-minimal continuous, for each $x_{\alpha} \in f^{-1}(B)$, there exists a fuzzy *r*-minimal open set $U_{x_{\alpha}}$ of x_{α} such that $f(U_{x_{\alpha}}) \subseteq cl(B)$. Now we can say for each $x_{\alpha} \in f^{-1}(B)$, there exists a fuzzy *r*-minimal open set $U_{x_{\alpha}}$ such that

$$x_{\alpha} \in U_{x_{\alpha}} \subseteq f^{-1}(f(U_{x_{\alpha}})) \subseteq f^{-1}(cl(B,r)).$$

This implies $x_{\alpha} \in mI(f^{-1}(cl(B,r)), r)$. Hence $f^{-1}(B) \subseteq mI(f^{-1}(cl(B,r)), r)$.

(2) \Rightarrow (1) Let x_{α} be a fuzzy point in X and V a fuzzy r-open open set containing $f(x_{\alpha})$. Then since $x_{\alpha} \in$

 $f^{-1}(V) \subseteq mI(f^{-1}(cl(V,r)), r)$, there exists a fuzzy *r*-minimal open set U containing x_{α} such that $x_{\alpha} \in U \subseteq f^{-1}(cl(V,r))$. This implies $f(U) \subseteq f(f^{-1}(cl(V,r))) \subseteq cl(V,r)$. Hence f is fuzzy weakly *r*-minimal continuous.

(1) \Rightarrow (3) Let *F* be any fuzzy *r*-closed set of *Y*. Then $\tilde{1} - F$ is a fuzzy *r*-open set in *Y*, from Theorem 2.2 and Theorem 2.4, it follows

$$\begin{aligned} f^{-1}(\tilde{\mathbf{1}} - F) &\subseteq mI(f^{-1}(cl(\tilde{\mathbf{1}} - F, r)), r) \\ &= mI(f^{-1}(\tilde{\mathbf{1}} - int(F, r)), r) \\ &= mI(\tilde{\mathbf{1}} - f^{-1}(int(F, r)), r) \\ &= \tilde{\mathbf{1}} - mC(f^{-1}(int(F, r)), r). \end{aligned}$$

Hence we have $mC(f^{-1}(int(F, r)), r) \subseteq f^{-1}(F)$.

(3) \Rightarrow (4) Let B be any fuzzy set in Y. Since cl(B, r) is a fuzzy r-closed set in Y, by (3),

$$mC(f^{-1}(int(cl(B,r),r)),r) \subseteq f^{-1}(cl(B,r)).$$

 $\begin{array}{rcl} (4) \Rightarrow (5) \mbox{ For } B &\in I^Y, \ f^{-1}(int(B,r)) = \\ \tilde{\mathbf{1}} - f^{-1}(cl(\tilde{\mathbf{1}} - B, r)) &\subseteq \ \tilde{\mathbf{1}} - mC(f^{-1}(int(cl(\tilde{\mathbf{1}} - B, r), r)), r) = mI(f^{-1}(cl(int(B, r), r)), r). \\ \mbox{ Thus } f^{-1}(int(B, r)) \subseteq mI(f^{-1}(cl(int(B, r), r)), r). \end{array}$

 $(5) \Rightarrow (6)$ Let V be any fuzzy r-open set of Y. Then by (5),

$$\begin{split} \tilde{\mathbf{1}} - f^{-1}(cl(V,r)) &= f^{-1}(int(\tilde{\mathbf{1}} - V, r)) \\ &\subseteq mI(f^{-1}(cl(int(\tilde{\mathbf{1}} - V, r), r)), r) \\ &= mI(\tilde{\mathbf{1}} - f^{-1}(int(cl(V, r), r)), r) \\ &= \tilde{\mathbf{1}} - mC(f^{-1}(int(cl(V, r), r)), r) \\ &\subseteq \tilde{\mathbf{1}} - mC(f^{-1}(V), r). \end{split}$$

Hence we have $mC(f^{-1}(V), r) \subseteq f^{-1}(cl(V, r))$.

(6) \Rightarrow (1) Let V be a fuzzy r-open set containing $f(x_{\alpha})$. By (6),

$$f^{-1}(V) \subseteq f^{-1}(int(cl(V,r),r))$$

= $\tilde{\mathbf{1}} - f^{-1}(cl(\tilde{\mathbf{1}} - cl(V,r),r))$
 $\subseteq \tilde{\mathbf{1}} - mC(f^{-1}(\tilde{\mathbf{1}} - cl(V,r)),r)$
= $mI(f^{-1}(cl(V,r)),r).$

It implies $x_{\alpha} \in mI(f^{-1}(cl(V,r)), r)$. Thus there exists a fuzzy *r*-minimal open set U such that $M_x \in U \subseteq f^{-1}(cl(V,r))$. Hence $f(U) \subseteq cl(V,r)$.

Theorem 3.5. Let $f : X \to Y$ be a function between an *r*-FMS (X, \mathcal{M}_X) and a fuzzy topological space (Y, σ) . Then the following statements are equivalent:

(1) f is fuzzy weakly r-minimal continuous.

(2) $mC(f^{-1}(int(cl(G, r), r)), r) \subseteq f^{-1}(cl(G, r))$ for each fuzzy *r*-open set *G* in *Y*.

(3) $mC(f^{-1}(int(cl(V,r),r)),r) \subseteq f^{-1}(cl(V,r))$ for each fuzzy *r*-preopen set *V* in *Y*.

(4) $mC(f^{-1}(int(K, r)), r) \subseteq f^{-1}(K)$ for each fuzzy *r*-regular closed set K in Y.

(5) $mC(f^{-1}(int(cl(G, r), r)), r) \subseteq f^{-1}(cl(G, r))$ for each fuzzy r- β -open set G in Y.

(6) $mC(f^{-1}(int(cl(G, r), r)), r) \subseteq f^{-1}(cl(G, r))$ for each fuzzy *r*-semiopen set *G* in *Y*.

Proof. (1) \Rightarrow (2) Let G be a fuzzy r-open set of Y; then by Theorem 3.4 (3), we have $mC(f^{-1}(int(cl(G, r), r)), r) \subseteq f^{-1}(cl(G, r))$.

(2) \Rightarrow (3) Let V be a fuzzy r-preopen of Y. Then $V \subseteq int(cl(V,r),r)$. Set A = int(cl(V,r),r). Then since A is a fuzzy r-open set, from (2), it follows

$$mC(f^{-1}(int(cl(A,r),r)),r) \subseteq f^{-1}(cl(A,r)).$$

Since cl(A, r) = cl(V, r), we have

$$mC(f^{-1}(int(cl(V,r),r)),r) \subseteq f^{-1}(cl(V,r)).$$

(3) \Rightarrow (4) Let K be a fuzzy r-regular closed set of Y. Then since int(K,r) is an a fuzzy r-preopen set, by (3), $mC(f^{-1}(int(cl(int(K,r),r),r)),r) \subseteq f^{-1}(cl(int(K,r),r))$. Since K is fuzzy r-regular closed and int(K,r) = int(cl(int(K,r),r),r), we have

$$mC(f^{-1}(int(K,r)),r) \subseteq f^{-1}(K,r).$$

(4) \Rightarrow (5) Let G be a fuzzy r- β -open set. Then $G \subseteq cl(int(cl(G,r),r),r)$ and cl(G,r) = cl(int(cl(G,r),r),r). So cl(G) is a fuzzy r-regular closed set. Hence by (4), we have

$$mC(f^{-1}(int(cl(G,r),r)),r) \subseteq f^{-1}(cl(G,r)).$$

 $(5) \Rightarrow (6)$ It is obvious.

(6) \Rightarrow (1) Let V be a fuzzy r-open set; then since V is a fuzzy r-semiopen set, by (6) and $V \subseteq int(cl(V,r),r)$, we have $mC(f^{-1}(V),r) \subseteq mC(f^{-1}(int(cl(V,r),r)),r) \subseteq f^{-1}(cl(V,r))$. Hence, by Theorem 3.4 (6), f is fuzzy weakly r-minimal continuous.

Definition 3.6. Let $f : X \to Y$ be a mapping between an *r*-FMS (X, \mathcal{M}_X) and a fuzzy topological space (Y, σ) . Then *f* is to be *fuzzy co-r-minimal open* if for every fuzzy *r*-minimal open set *A* in *X*, f(A) is fuzzy *r*-open in *Y*.

Theorem 3.7. Let $f : X \to Y$ be a function between an *r*-FMS (X, \mathcal{M}_X) and a fuzzy topological topological space (Y, σ) . Then the following are equivalent:

(1) *f* is fuzzy co-*r*-minimal open.
(2) *f*(*mI*(*A*, *r*)) ⊆ *int*(*f*(*A*), *r*) for *A* ∈ *I^X*.
(3) *mI*(*f*⁻¹(*B*), *r*) ⊆ *f*⁻¹(*int*(*B*, *r*)) for *B* ∈ *I^Y*.

 \square

 $\begin{array}{l} \textit{Proof.} \ (1) \Rightarrow (2) \ \text{For} \ A \in I^X, \ f(mI(A,r)) = f(\cup\{B \in I^X : B \subseteq A, B \text{is fuzzy } r\text{-minimal open}\}) \\ = \cup\{f(B) \in I^Y : f(B) \subseteq f(A), f(B) \text{is fuzzy } r\text{-open}\} \\ \subseteq \cup\{U \in I^Y : U \subseteq f(A), U \text{is fuzzy } r\text{-open}\} \\ = int(f(A), r). \\ \text{Hence } f(mI(A, r)) \subseteq int(f(A), r). \end{array}$

 $(2) \Rightarrow (1)$ For every fuzzy *r*-minimal open set A in X, A = mI(A, r) and by (2), $f(A) = f(mI(A, r)) \subseteq int(f(A), r)$. This implies f(A) is fuzzy *r*-open, and hence f is fuzzy co-r-minimal open.

 $(2) \Rightarrow (3)$ For $B \in I^Y$, from (2) it follows that

$$f(mI(f^{-1}(B), r)) \subseteq int(f(f^{-1}(B)), r) \subseteq int(B, r).$$

Hence we get (3).

Similarly, we get $(3) \Rightarrow (2)$.

Definition 3.8 ([5]). Let (X, \mathcal{M}_X) be an *r*-FMS and $\mathcal{A} = \{A_i \in I^X : i \in J\}$. \mathcal{A} is called a *fuzzy r-minimal* cover if $\cup \{A_i : i \in J\} = \mathbf{\tilde{1}}$. It is a *fuzzy r-minimal* open cover if each A_i is a fuzzy *r*-minimal open set. A subcover of a fuzzy *r*-minimal cover \mathcal{A} is a subfamily of it which also is a fuzzy *r*-minimal cover. A fuzzy set A in X is said to be *fuzzy r-minimal* compact (resp., almost *fuzzy r-minimal* compact, nearly *fuzzy r-minimal* compact) if for every fuzzy *r*-minimal open cover $\mathcal{A} = \{A_i \in I^X : i \in J\}$ of A, there exists $J_0 = \{j_1, j_2, \cdots, j_n\} \subseteq J$ such that $A \subseteq \bigcup_{j \in J_0} A_j$ (resp., $A \subseteq \bigcup_{j \in J_0} mC(A_j, r)$, $A \subseteq \bigcup_{i \in J_0} mI(mC(A_i, r), r)$).

Definition 3.9 ([4]). Let (X, τ) be a fuzzy topological space. A fuzzy set A in X is said to be r-fuzzy compact (resp., r-fuzzy almost compact, r-fuzzy nearly compact) if for every fuzzy r-open cover $\mathcal{A} = \{A_i \in I^X : \tau(A_i) \ge r, i \in J\}$ of A, there exists $J_0 = \{j_1, j_2, \cdots, j_n\} \subseteq J$ such that $A \subseteq \bigcup_{j \in J_0} A_i$ (resp., $A \subseteq \bigcup_{j \in J_0} cl(A_j, r)$, $A \subseteq \bigcup_{j \in J_0} int(cl(A_j, r), r)$).

Let X be a nonempty set and $\mathcal{M} : I^X \to I$ a fuzzy family on X. The fuzzy family \mathcal{M} is said to have the property (\mathcal{U}) [11] if for $A_i \in \mathcal{M}$ $(i \in J)$,

$$\mathcal{M}(\cup A_i) \ge \wedge \mathcal{M}(A_i).$$

Theorem 3.10 ([11]). Let (X, \mathcal{M}) be an *r*-FMS with the property (\mathcal{U}) . Then

(1) mI(A, r) = A if and only if $A \in \mathcal{M}_r$ for $A \in I^X$. (2) mC(A, r) = A if and only if $A^c \in \mathcal{M}_r$ for $A \in I^X$.

Theorem 3.11. Let $f : X \to Y$ be a fuzzy weakly *r*-minimal continuous between an *r*-FMS (X, \mathcal{M}_X) and a fuzzy topological space (Y, σ) . If *A* is a fuzzy *r*-minimal compact set and if \mathcal{M}_X has the property (\mathcal{U}) , then f(A) is *r*-fuzzy almost compact.

Proof. Let $\mathcal{B} = \{B_i \in I^Y : i \in J\}$ be a fuzzy ropen cover of f(A) in Y. Then by the property (\mathcal{U}) , $\{mI(f^{-1}(cl(B_i, r)), r) : B_i \in \mathcal{B} \text{ for } i \in J\}$ is a fuzzy r-minimal open cover of A in X. Since A is fuzzy rminimal compact, there exists $J_0 = \{j_1, j_2, \cdots, j_n\} \subseteq J$ such that $A \subseteq \bigcup_{j \in J_0} mI(f^{-1}(cl(B_j, r)), r) \subseteq \bigcup_{j \in J_0} f^{-1}(cl(B_j, r))$. Hence $f(A) \subseteq \bigcup_{j \in J_0} cl(B_j, r)$. \Box

Theorem 3.12. Let $f : X \to Y$ be a fuzzy weakly *r*-minimal continuous and fuzzy co-*r*-minimal open mapping between an *r*-FMS (X, \mathcal{M}_X) and a fuzzy topological space (Y, σ) . If *A* is an almost fuzzy *r*-minimal compact set and if \mathcal{M}_X has the property (\mathcal{U}) , then f(A) is *r*-fuzzy almost compact

Proof. Let $\mathcal{B} = \{B_i \in I^Y : i \in J\}$ be a fuzzy r-open cover of f(A) in Y. Then by the property $(\mathcal{U}), \{mI(f^{-1}(cl(B_i, r)), r) : B_i \in \mathcal{B} \text{ for } i \in J\}$ is a fuzzy r-minimal open cover of A in X. Since A is an almost fuzzy r-minimal compact set, there exists $J_0 = \{j_1, j_2, \cdots, j_n\} \subseteq J$ such that $A \subseteq \bigcup_{j \in J_0} mC(mI(f^{-1}(cl(B_j, r)), r), r)$. Since $int(cl(B_j, r), r)$ is fuzzy r-open in in Y, from Theorem 3.4 (2) and Theorem 3.7, it follows

$$\begin{array}{l} \cup_{j \in J_0} mC(mI(f^{-1}(cl(B_j, r)), r), r) \\ \subseteq \cup_{j \in J_0} mC(f^{-1}(int(cl(B_j, r), r)), r) \\ \subseteq \cup_{j \in J_0} f^{-1}(cl(B_j, r)). \\ \end{array} \\ \begin{array}{l} \text{Hence } f(A) \subseteq \cup_{j \in J_0} cl(B_j, r). \end{array}$$

Theorem 3.13. Let $f : X \to Y$ be a fuzzy weakly *r*-minimal continuous and fuzzy co-*r*-minimal open mapping between an *r*-FMS (X, \mathcal{M}_X) and a fuzzy topological space (Y, σ) . If *A* is a nearly fuzzy *r*-minimal compact set and if \mathcal{M}_X has the property (\mathcal{U}) , then f(A) is *r*-fuzzy nearly compact.

Proof. Let $\mathcal{B} = \{B_i \in I^Y : i \in J\}$ be a fuzzy *r*-open cover of f(A) in *Y*. Then $\{mI(f^{-1}(cl(B_i, r)), r) : B_i \in \mathcal{B} \text{ for } i \in J\}$ is a fuzzy *r*-minimal open cover of *A* in *X*. By definition of nearly fuzzy *r*-minimal compactness, there exists $J_0 = \{j_1, j_2, \dots, j_n\} \subseteq J$ such that $A \subseteq \bigcup_{j \in J_0} mI(mC(mI(f^{-1}(cl(B_j, r)), r), r), r))$. Since $int(cl(B_j, r), r)$ is fuzzy *r*-open, from Theorem 3.4 (2) and Theorem 3.7, it follows

$$\bigcup_{j \in J_0} mI(mC(mI(f^{-1}(cl(B_j, r)), r), r), r))$$

$$\subseteq \bigcup_{j \in J_0} mI(mC(f^{-1}(int(cl(B_j, r), r)), r), r))$$

$$\subseteq \bigcup_{j \in J_0} mI(f^{-1}(cl(B_j, r)), r))$$

$$\subseteq \bigcup_{j \in J_0} f^{-1}(int(cl(B_j, r), r))).$$

This implies $f(A) \subseteq \bigcup_{j \in J_0} int(cl(B_j, r), r)$, and hence f(A) is r-fuzzy nearly compact. On Fuzzy Weak r-minimal Continuity Between Fuzzy Minimal Spaces and Fuzzy Topological Spaces

References

- S. E. Abbas, "Fuzzy β-irresolute functions", Applied Mathematics and Computation, vol. 157, pp. 369– 380, 2004.
- [2] C. L. Chang, "Fuzzy topological spaces", J. Math. Anal. Appl., vol. 24, pp. 182-190, 1968.
- [3] K. C. Chattopadhyay, R. N. Hazra, and S. K. Samanta, "Gradation of openness : Fuzzy topology", *Fuzzy Sets and Systems*, vol. 49, pp. 237–242, 1992.
- [4] Y. C. Kim and S. E. Addas. "On Several Types of Rfuzzy Compactness", *The Journal of Fuzzy Mathematics*, vol.12, no.4, pp. 827-844, 2004.
- [5] J. I. Kim, W. K. Min and Y. H. Yoo. "Fuzzy r-Compactness on Fuzzy r-Minimal Spaces", International Journal of Fuzzy Logic and Intelligent Systems, accepted.
- [6] S. J. Lee and E. P. Lee, "Fuzzy *r*-preopen and fuzzy *r*-precontinuous maps", *Bull. Korean Math. Soc.*, vol. 36, pp. 91–108, 1999.
- [7] S. J. Lee and E. P. Lee, "Fuzzy *r*-continuous and fuzzy *r*-semicontinuous maps", *Int. J. Math. Math. Sci.*, vol.27, pp.53–63, 2001.

- [8] S. J. Lee and E. P. Lee, "Fuzzy *r*-regular open sets and fuzzy almost *r*-continuous maps", *Bull. Korean Math. Soc.*, vol.39, pp.91–108, 2002.
- [9] W. K. Min, "Fuzzy r-minimal Continuous Functions Between Fuzzy Minimal Spaces and Fuzzy topological spaces" *Int. J. Fuzzy Logic and Intelligent Systems*, vol. 9, no. 4, pp. 281-284, 2009.
- [10] A. A. Ramadan, "Smooth topological spaces", *Fuzzy Sets and Systems*, vol. 48, pp. 371–375, 1992.
- [11] Y. H. Yoo, W. K. Min and J. I. Kim. "Fuzzy r-Minimal Structures and Fuzzy r-Minimal Spaces", *Far East Journal of Mathematical Sciences*, vol. 33, no. 2, pp. 193-205, 2009.
- [12] L. A. Zadeh, "Fuzzy sets", *Information and Control*, vol. 8, pp. 338–353, 1965.

Won Keun Min He received his Ph.D. degree in the Department of Mathe-matics from Korea University, Seoul, Korea, in 1987. He is currently a professor in the Department of Mathemat-ics, Kangwon National University. His research interests include general topology and fuzzy topology.

E-mail:wkmin@kangwon.ac.kr