
Filter Convergence and Fuzzy Topology

Kyung Chan Min 1, Yoon Jin Lee2 and Jae Deuk Myung3

1 Department of Mathematics, Yonsei University, Seoul 120-749, Korea
2 Department of Applied Mathematics, Hankyong National University, Anseong, 456-749 , Korea

3 Department of General Studies, Korea Aerospace University, Goyang, 412-791, Korea

Abstract

After introducing many different types of prefilter convergence, we introduce an universal method to define various
notions of compactness using cluster point and convergence of a prefilter and to prove the Tychonoff theorem using
characterizations of ultra(maximal) prefilters.
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1. Introduction

In general topology the notion of convergence is one
of main concepts which play essential role in theoretical
development and its applications. In fact the fundamen-
tal notions, limit and continuity in topology are described
naturally in terms of convergence. Particularly, filter con-
vergence and net convergence are very useful notions to
deal with compactness in terms of cluster points and limit
points.

In fuzzy topology also the notion of convergence plays
an important role to deal with limit and continuity. More-
over it is interesting to know that there exist various notions
of convergence in a fuzzy topology[1,3,4,5,8,9,14,18]. On
the other hand there exist various notions of compactness in
a fuzzy topology using open sets, prefilters, fuzzy nets and
functors between fuzzy topological spaces and topological
spaces[2,6,7,10,11,15,17]. This means that we can discuss
various types of compactness in fuzzy topology in terms of
convergence.

In this chapter, first we introduce many different types
of prefilter convergence. After finding an universal method
to define the notions of compactness using cluster points
and convergence of a prefilter, we prove the Tychonoff the-
orem using characterizations of ultra(maximal) prefilters.
In [2], the Tychonoff theorems forα -compactness and
strong compactness, respectively, were proved using the
Alexander Subbase Theorem. It is interesting to note that
our approach provides a simple proof for the Tychonoff the-
orems as good extensions of compactness in a topological
space. Various kinds of examples in a fuzzy topological
space will be followed.

2. Filter Convergence

In a fuzzy topological space, there exist many differ-
ent types of prefilter convergence depending on a notion of
neighborhood of a point or a fuzzy point. First we intro-
duce various notions of neighborhood in a fuzzy topologi-
cal space.

Neighbourhood(1) [18]
LetX be a fuzzy topological space andx ∈ X. A fuzzy

setV in X is a neighborhood ofx if there exists an open
setU in X such thatU ⊆ V andU(x) = V (x) > 0.

Neighbourhood(2) [1]
A fuzzy setV in X is a neighborhood of a fuzzy point

p = (x, α) (0 < α ≤ 1) if there exists an open setU in X
such thatp ⊆ U ⊆ V .

Neighbourhood(3) [16]
A fuzzy setV in X is a neighborhood of a fuzzy point

p = (x, α) (0 < α < 1) if there exists an open setU in X
such thatp ∈ U ⊆ V (p ∈ U meansα < U(x)).

Neighbourhood(4) [14]
A fuzzy set V in X is a neighborhood (Q-

neighborhood) of a fuzzy pointp = (x, α) (0 < α ≤ 1) if
there exists an open setU in X such thatpqU ⊆ V (pqU
meansU(x) + α > 1).

Remark. Wang [17] defined another notion of neighbor-
hood in terms of closed set as follows : A closed setC
in X is a neighborhood (R-neighborhood) of a fuzzy point
p = (x, α) (0 < α ≤ 1) if p 6⊆ C. In fact, it is easy to see
that the notions Q-neighborhood and R-neighborhood are
equivalent.
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Now we introduce various types of prefilter conver-
gence.

Let x ∈ X, α ∈ (0, 1] or (0, 1) andp = (x, α), a fuzzy
pointX. We denoteN i(p) = the collection of all neighbor-
hood (i)s of p for eachi = 1, 2, 3, 4. For i = 1, we mean
p = (x, 1).

Convergence(I), (II), (III), (IV) : We say that p is a
cluster pointof a prefilterF on X if U ∩ F 6= ∅ for all
U ∈ N (p) andF ∈ F . It is said that a prefilterF on X
converges to pand writeF → p, if N (p) ⊆ F . Clearly, if
F → p in X, thenp is a cluster point ofF .

Convergence(V) : We say thatp is a cluster pointof
a prefilterF on X if UqF for all U ∈ N (p) andF ∈ F
(UqF means thatU(x) + F (x) > 1 for somex ∈ X).
We say that a prefilterF on X converges to pand write
F → p, if for any neighborhoodU of p, there existsF ∈ F
such that for everyF ′ ⊆ F , U(x) + F ′(x) > 1 for every
x ∈ SuppF ′. We note that ifF → p in X, thenp is a
cluster point ofF .

Convergence(VI) : A prefilter F on X is called aα-
prefilter if F does not contain the constant functioncα,
(0 ≤ α < 1). We note that a prefilterF on X is anα-
prefilter iff F−1(α, 1] 6= ∅ for everyF ∈ F . We denote by
F (X), P (X) the collection of filters, respectively prefilters
on X. We denote byPα(X) the collection of allα-filters
on X. We define a correspondenceια : Pα(X) → F (X)
by ια(F) = {U−1(α, 1] : U ∈ F}. Let (X, δ) be a fuzzy
topological space. For eachα ∈ [0, 1), we consider the
topologyια(δ) = {U−1(α, 1] : U ∈ δ} on X. Let (X, τ)
be a topological space. For eachα ∈ [0, 1), we consider
the fuzzy topologyωα(τ) = {U ∈ IX : U−1(α, 1] ∈ τ}
onX. We say thatp = (x, α) is aα-cluster point of a pre-
filter F onX if F is aα-prefilter andx is a cluster point of
the filter ια(F) in (X, ια(δ)). We say thatF α-converges
to p = (x, α), denote byF α→ p, if F is aα-prefilter and
the filterια(F) converges tox in (X, ια(δ)).

Theorem 2.1. Let {fi : X → Xi}Λ be a family of fuzzy
continuous maps. Assume thatX has an initial fuzzy
topology with respect to{fi}Λ. For any given conver-
gence among Convergences (I), (II), (III), (IV), (V) and
(VI) F → p in X if and only if fi(F) → fi(p) in Xi

for anyi ∈ Λ.

Proof . It is routine. For convergence (V), we use the fact
pq∩n

i=1Ai if and only if pqAi for all i = 1, · · · , n. For con-
vergence (VI), we use the fact that the correspondenceια
preserves initial families. (Cf. Theorem 1.5 in [6]).

3. Ultra Compact Spaces

In this section we introduce a number of conditions for
an universal scheme to define a notion of ultrafilter com-
pactness and to obtain the Tychonoff theorem.

Let X be a fuzzy topological space. Letα ∈ (0, 1]
or (0, 1). Let SX ⊆ P (X). Let CX ⊆ SX × PX and
LX ⊆ SX × PX , wherePX = {(x, α) : x ∈ X}.

(P1) (F , p) ∈ CX if and only if there existsG ∈ SX such
thatG ⊇ F and(G, p) ∈ LX

(P2) for every elementF ∈ SX , there exists a maximal
element inSX containingF with respect to inclu-
sion.

(P3) if f : X → Y is a map andF is a maximal element
in SX , thenf(F) is a maximal element inSY .

(P4) (F , p) ∈ L∏
i
Xi

if and only if (πi(F), πi(p)) ∈ LXi

for eachi.

From now on, we assume that every fuzzy topological
spaceX is equipped with a triples(SX , CX , LX) satisfy-
ing the conditions (P1), (P2), (P3)and (P4).

Definition 3.1. A space X is called anultrafilter α-
compact spaceif for every maximal elementU in SX , there
existsp ∈ PX such that(U , p) ∈ LX .

Theorem 3.2. A spaceX is ultrafilter α-compact if and
only if for every elementF in SX there existsp ∈ PX

such that(F , p) ∈ CX .

Proof. (⇒) For any elementF in SX , there exists a max-
imal elementU in SX containingF with respect to in-
clusion by (P2). Since there existsp ∈ PX such that
(U , p) ∈ LX , andF ⊆ U , (F , p) ∈ CX by (P1).

(⇐) Let U be a maxiaml element inSX . Then there
existsp ∈ PX such that(U , p) ∈ CX . Hence(U , p) ∈ LX

by (P1).

Theorem 3.3. (Tychonoff) Let {Xi}Λ be a family of
spaces. Then the product space

∏
iXi is ultrafilter α-

compact if and only if so isXi for eachi ∈ Λ.

Proof. (⇒) For eachi ∈ Λ, letA be a maximal element
in SXi

andF the prefilter generated by{πi
−1(A) : A ∈

A}. Let U be a maximal element inS∏
i
Xi

containingF
by (P2). Since

∏
iXi is ultrafilter α-compact, there ex-

ists p ∈ P∏
i
Xi

such that(U , p) ∈ L∏
i
Xi

and hence,

(πi(U), πi(p)) ∈ LXi
by (P4). Note thatA = πi(F) =

πi(U).
(⇐) Let U be a maximal element inS∏

i
Xi

. Then

πi(U) is a maximal element inSXi for eachi, by (P3).
Let (πi(U), πi(p)) ∈ LXi

for eachi. Let p = ((xi), α),
wherepi = (xi, α). Then by (P4) (U , p) ∈ L∏

i
Xi

.

We introduce one more condition:
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(P5) if f : X → Y is fuzzy continuous, then whenever
(F , p) ∈ LX , (f(F), f(p)) ∈ LY .

Theorem 3.4. Let f : X → Y be a fuzzy continuous onto
map. Assume thatX andY satisfy (P3) and (P5). If X is
ultraα-compact, then so isY .

Proof. It is obvious by a smilar method in the proof of The-
orem 3.3.

Assume that every fuzzy topological spaceX is
equipped with a triple(SX , CX , LX) satisfies the condi-
tions (P1), (P2), (P3), (P4) and (P5).

Definition 3.5. A spaceX is called anultrafilter compact
spaceif it is ultrafilter α-compact for eachα.

By Theorem 3.4, we have the following result.

Theorem 3.6.

1. Let f : X → Y be a fuzzy continuous onto map. If
X is ultrafilter compact, then so isY .

2. The Tyconoff theorem holds for ultrafilter compact
spaces.

4. Ultrafilters

The characterization of an ultrafilter on a setX in terms
of a subset ofX is important to calculate in many problems
using ultrafilters. In this section we introduce character-
izations of ultra prefilter depending on types of prefilter,
respectively, and use them to obtain results in Section 3.
First, we introduce a characterization of a prefilter. (See
[12] for details)

Definition 4.1. A prefilterF on a setX is anultrafilter if
there is no strictly finer prefilter thanF .

Definition 4.2. Let F be a prefilter onX. We say that a
subsetY of X is included inF / if every fuzzy set inX
with supportY is an element ofF .

Theorem 4.3. LetF be a prefilter onX. Then the follow-
ing are equivalent,

1. F is an ultrafilter.

2. Let A ∈ IF . If A 6∈ F , then there is someF ∈ F
such thatA ∩ F = ∅.

3. Let T ⊆ X. Then eitherT or TC is included inF .

Theorem 4.4. Let f : X → Y be a map. IfF is an ultra-
filter onX, thenf(F) is an ultrafilter onY .

Now we introduce a characterization of an ultraᾱ-filter.
(See [12] for details)

Definition 4.5. A prefilter F in X is called anα-filter
(0 < α ≤ 1) if infF∈F hgt(F ) = α, wherehgt(F ) =
supx∈X µF (x), the height ofF . An α-filter F on X is
called anᾱ-filter if Fα = F−1([α, 1]) 6= ∅ for every
F ∈ F , whereFα is theα-cut ofF .

Definition 4.6. An ᾱ-filter F on X is called anultra ᾱ-
filter if there is no strictly finer̄α-filter thanF .

Definition 4.7. Let F be a prefilter onX andS ⊆ X. S
is calledα-included inF if every fuzzy setA in X with
α-cutS is contained inF .

Theorem 4.8. Let X be a set andF anᾱ-filter onX. Then
the following are equivalent.

1. F is an ultraᾱ-filter.

2. If A ∈ IX andA 6∈ F thenA ∩ F < α for some
F ∈ F .

3. If S ⊆ X then eitherS or SC is α-included inF .

Theorem 4.9. Let X andY be sets andf : X → Y a map.
If F is anα-filter (resp. ᾱ-filter, ultra ᾱ-filter) on X, then
f(F) is anα-filter (resp.ᾱ-filter, ultra ᾱ-filter) onY .

Remark. G.Wang [17] defined a notion of N-compactness
in terms ofα-filter: A fuzzy subset inX is N-compact iff
eachα-filter F (α ∈ (0, 1]) has a cluster point(x, α) ∈ A,
wheneverA ∈ F . He proved the Tychonoff theorem for
N-compactness usingα-net. We note that if we can have
a characterization of an ultraα-filter similar to Theorem
4.8 to obtain Theorem 4.9, the proof of the Tychonoff the-
orem for N-compactness should be much simpler than the
Wang’s proof in [17].

Now, we introduce a characterization of an ultrat-
prefilter

Definition 4.10. [13] A α-prefilterF onX is called anul-
tra α-prefilter (=maximalα-prefilter) if there is no strictly
finerα-prefilter thanF .

271

Filter Convergence and Fuzzy Topolgy



Definition 4.11. [13] Let F beα-prefilter onX. We say
that a subset T ofX is α- included in F if every fuzzy set
A in X with A−1(α, 1] = T is an element ofF .

Theorem 4.12. [13] Let F be aα-prefilter. Then the fol-
lowing statements are equivalent.

1. F is an ultraα-prefilter.

2. For everyA ∈ IX such thatA−1(α, 1] 6= ∅, if A /∈
F , then there existsF ∈ F such thatA ∩ F ⊆ cα.

3. For everyT ⊆ X, eitherT or TC is α-included in
F .

Theorem 4.13. Let f : X → Y be a map. IfF is a
α-prefilter (resp. ultraα-prefilter) onX, thenf(F) is a
α-prefilter (resp. ultraα-prefilter) onY .

Proof. Supposef(F) is not anα-prefilter, i.e. cα ∈
f(F). Then f(F) ⊆ cα for someF ∈ F and hence
F ⊆ f−1(cα) = cα. Therefore we havecα ∈ F , which
is a contradiction. LetF be an ultraα-prefilter onX.
Let T ⊆ Y and S = f−1(T ) ⊆ X. Then eitherS
or SC is α-included inF by Thoerem 4.12. Suppose
S is α-included inF . Let A be a fuzzy set inY with
A−1(α, 1] = T . Put B = f−1(A). ThenB−1(α, 1] =
f−1(A−1(α, 1]) = f−1(T ) = S and henceB ∈ F . Now
f(B) = f(f−1(A)) ⊆ A and henceA ∈ f(F). Suppose
SC is α-included inF . Then by a similar argument we can
show thatTC is α-included inf(F). Thereforef(F) is an
ultraα-prefilter onY by Theorem 4.12.

5. Applications

Using the universal scheme for ultrafilter compactness,
we introduce various types of an ultrafilter compact spaces
depending on prefilter Convergences (I), (II), (III), (IV),
(V) and (VI), respectively definded in Section 2. We show
that each notion of ultrafilter compactness satisfies the con-
ditions (P1), (P2), (P3), (P4) and (P5). This means each
prefilter convergence provides Theorems 3.2, 3.3, 3.4, 3.5
and 3.6.

A. Convergence(I)
For a fuzzy topological spaceX, let SX = P (X), CX =
{(F , p) ∈ SX : p is a cluster point ofF in X} and
LX = {(F , p) ∈ SX : F → p in X}, wherep ∈ PX =
{(x, 1) : x ∈ X}. It is known [4] that (P1) and (P3) hold
for the triple(SX , CX , LX). By Zorn’s Lemma, it is easy
to check that the condition (P2) holds. By Proposition 2.1,
the condition (P4) holds. Clearly the condition (P5) holds.

B. Convergence(II), (III), (IV)

For a fuzzy topological spaceX, takeα ∈ (0, 1] or (0, 1)
and letSX = P (X), CX = {(F , p) ∈ SX : p is a clus-
ter point ofF in X} andLX = {(F , p) ∈ SX : F → p
in X}, wherep ∈ PX = {(x, α) : x ∈ X}. It is known
[11] that (P1) and (P3) hold for the triple(SX , CX , LX)
for convergence (III). By similar methods in [12], we can
show that (P1) and (P3) hold for convergence (II), (III),
respectively. Moreover, it is routine to check that the con-
ditions (P2), (P4) and (P5) hold for convergence (II), (III),
(IV), respectively.

C. TheConvergence(III) can give a different type of ultra-
filter compactness as follows. A fuzzy pointp = (x, α) is
called anα-cluster pointof a prefilterF on X if for every
U ∈ N (p) and for everyF ∈ F , (U ∩ F )α 6= ∅. We note
that if a prefilterF on X has anα-cluster point, then it is
an ᾱ-filter. Let α ∈ (0, 1) andSX= the collection of all
ᾱ-filters onX. Let CX = {(F , p) : p is anα-cluster point
of F} andLX = {(F , p) : F → p in X}.
(P1) holds. Let(F , p) ∈ CX and letB = {U ∩ F : U ∈
N (p), F ∈ F} , which is a prefilter base onX. Then the
prefilterG = [B] is anᾱ-filter andG → x in X. It is easy
to see that the converse is true. By routine process, we can
show that (P2) holds. By Theorem 2.6 in [11], we have
(P3). Clearly (P4) and (P5) hold by Theorem 2.1. Min and
Kim [11] called an ultrafilterα-compact space in this sec-
tion as a stable fuzzy compact and showed the Tychonoff
theorem.

Remark 5.1 Min and Kim [11] compared ultrafilterα-
compactness with other notions of compactness:

strong fuzzy compact⇒ ultrafilter compact⇒ fuzzy compact

None of the arrows is revisible. Hence by Theorem 5.7
in [17] strong fuzzy compactness, ultrafilter compactness
and fuzzy compactness are equivalent in a Hausdorff fuzzy
topological space.

D. Convergence(V)
For a fuzzy topological spaceX, takeα ∈ (0, 1] and let
SX = P (X), CX = {(F , p) ∈ SX : p is a cluster point
of F in X} andLX = {(F , p) ∈ SX : F → p in X},
wherep ∈ PX = {(x, α) : x ∈ X}. The condition (P1)
follows form Theorem 13.2 [14]. The condition (P2) can
be obtained by a usual method using Zorn’s Lemma. The
condition (P3) follows form Theorem 4.4. The conditions
(P4) and (P5) follow from Theorem 3.7 and Proposition
3.5 [8], respectively.

E. Convergence(VI)
Forα ∈ [0, 1), let SX = the collection of allα-prefilters on
X. Let CX = {(F , p) : p is aα-cluster point ofF in X}
andLX = {(F , p) : F α→ p in X}. (P1) holds by Propo-
sition 5.2 in [13]. By routine work, we can show that (P2)
holds. (P3) holds by Theorem 4.13. Moreover it is easy to
check that (P4) and (P5) hold, since the correspondenceια
preserves initial sources. (Cf. Theorem 1.5 in [6])
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Remark 5.2 De Prada Vincente and Macho Stadler [13]
showed that a fuzzy topological space(X, δ) is ultrafilter
α-compact for Convergence (VI) iff it is strong fuzzy com-
pact. In [2], the Tychonoff theorems forα-compactness
and strong compactness, respectively, were proved using
the Alexander Subbase Theorem. Therefore our approach
using ultrafilter provides a different and simple proof for
the Tychonoff theorem.

6. Good extensions

In this section we show that various types of ultrafil-
ter compactness depending on the notions of convergence
of prefilter introduced in Section 5 are good extensions of
compactness in a topological space.

LetF be anα-prefilter on a setX (0 ≤ α < 1). Then
we know thatια(F) = {F−1(α, 1] : F ∈ F} is a filter on
X. We note that a0-prefilter means a prefilter. LetF be a
filter on a setX. Then forα ∈ [0, 1), ωα(F) = {F ∈ IX :
F−1(α, 1] ∈ F} is anα-prefilter onX.

Proposition 6.1. LetF , F be anα-prefilter, respectively a
filter onX andα ∈ [0, 1). Then

1. ια ◦ ωα(F) = F.

2. F ⊆ ωα ◦ ια(F) and henceF = ωα ◦ ια(F) for an
ultrafilterF .

Proof. It is straightforward by definitions.

Let F be anᾱ-filter on a setX (0 < α ≤ 1). Then
ια
∗(F) = {F−1[α, 1] : F ∈ F} is a filter onX. Let F be

a filter on a setX (0 < α ≤ 1). Thenωα
∗(F) = {F ∈

IX : F−1[α, 1] ∈ F} is an ᾱ-filter on X. By a routine
work we have the following:

Proposition 6.2. Let F , F be anα-filter, respectively a
filter onX andα ∈ [0, 1). Then

1. ι∗α ◦ ω∗α(F) = F.

2. F ⊆ ω∗α ◦ ι∗α(F) and henceF = ω∗α ◦ ι∗α(F) for an
ultrafilterF .

Proposition 6.3.

1. If U is an ultrafilter inP (X), thenια(U) andι∗α(U)
are ultrafilters inF (X) for α ∈ [0, 1).

2. If A is an ultrafilter in F (X), then ωα(A) and
ω∗α(A) are ultrafilters inP (X) for α ∈ [0, 1).

Proof. (1) Let ια(U) ⊆ A for a filter A on X. Then
U ⊆ ωα ◦ ια(U) ⊆ ωα(A), i.e. U = ωα(A). Hence
ια(U) = ια ◦ ωα(A) = A.

(2) SupposeG is a prefilter onX such thatωα(A) ⊂ G.
Then there existsG ∈ G such thatG 6∈ ωα(A), i.e.
G−1(α, 1] 6∈ A. HenceA = ια ◦ ωα(A) ⊂ ια(G), which
is a contradiction. By a similar method we obtain the re-
sults related toι∗α andω∗α.

Proposition 6.4. Let F be a filter on a topological space
(X, τ). Let F → x in X. Then

1. ωα(F) (resp.ω∗α(F))→ (x, α) in (X,ω(τ)) for each
α ∈ [0, 1] for Convergences (I), (II), (III), (IV) and
(V). For Convergence (I), we meanα = 1.

2. ωα(F) → (x, α) in (X, ω(τ)) for Convergence (VI).

Proof. (1) First we show for Convergences (I) and (II).
Let U : (X, τ) → I be a lower semicontinuous map such
that U(X) > α. Then there existsA ∈ F such that
A ⊆ U−1(α, 1] which impliesU−1(α, 1] ∈ F. Hence
U ∈ ω(F). Thereforeωα(F) → (x, α) in (X, ω(τ)).
For other Convergences, we show the results by a similar
method.

(2) Sinceια ◦ωα(F) = F andια(ω(τ)) = τ , the result
follows.

By definitions, we have the following:

Proposition 6.5. Let F be anα-prefilter on a fuzzy topo-
logical space(X, δ) andα ∈ [0, 1). LetF → (x, α) in X.
Then

1. ι0(F) → x in (X, ι0(δ)) for Convergence (I).

2. ι∗α(F) → x in (X, ιβ(δ)) for Convergence (III) for
eachβ < α.

3. ια(F) → x in (X, ια(δ)) for Convergence (VI).

Proposition 6.6. A topological space(X, τ) is compact iff
a fuzzy topological space(X, ω(τ)) is ultrafilter compact
with respect to the notions in Parts A, C and D in Section
5, respectively.

Proof. (⇒) For Parts A and D, letU be an ultrafilter in
P (X). Thenια(U) is an ultrafilter inF (X) for α ∈ [0, 1).
Since(X, τ) is compact,ια(U) → x in the topological
spaceX for somex ∈ X. HenceU = ωα ◦ ια(U) →
(x, α) in (X, ω(τ)) for eachα ∈ (0, 1]. The reasult for
Part C follows by a similar argument.

(⇐) For Parts A and D, letA be an ultrafilter inF (X).
Then ωα(A) is an ultrafilter inP (X) for α ∈ [0, 1).
Since ωα(A) is an α-prefilter on X, ωα(A) → (x, α)
in (X, ω(τ)) by Proposition 6.4. By definition,A =
ια ◦ ωα(A) → x in (X, τ). Hence the result follows. The
result for Part C follows by a similar argument.

By the above Proposition 6.6, we have the following:
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Corollary 6.7. The ultrafilter(α-)compactness defined in
Parts A, C and D, respectively, is a good extension of the
compactness in a topological space.

Remark. The result for Part C can obtained also from Re-
mark 5.1.
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